Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2018_2_a0, author = {D. A. Soshin}, title = {The class of balanced algebraic threshold functions}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {5--9}, publisher = {mathdoc}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2018_2_a0/} }
D. A. Soshin. The class of balanced algebraic threshold functions. Prikladnaâ diskretnaâ matematika, no. 2 (2018), pp. 5-9. http://geodesic.mathdoc.fr/item/PDM_2018_2_a0/
[1] Soshin D. A., “Constructing substitutions on the basis of threshold functions of multivalued logic”, Prikladnaya Diskretnaya Matematika, 2016, no. 2(32), 20–32 (in Russian) | DOI | MR
[2] Soshin D. A., “The implementation of Magma and 2-GOST block cipher substitutions by algebraic threshold functions”, Prikladnaya Diskretnaya Matematika, 2016, no. 3(33), 53–66 (in Russian) | DOI | MR
[3] Soshin D. A., “The constructive method for synthesis of balanced $k$-valued algebraic threshold functions”, Comp. Nanotechnol., 2015, no. 4, 31–36 (in Russian)
[4] Glukhov M. M., Elizarov V. P., Nechaev A. A., “Algebra”, Lan' Publ., St. Petersburg, 2015, 608 pp. (in Russian)
[5] Nikonov V. G., Nikonov N. V., “Peculiarities of threshold representations of $k$-valued functions”, Proc. Discr. Math., 11, no. 1, Fizmatlit Publ., Moscow, 2008, 60–85 (in Russian)
[6] Knuth D. E., The Art of Computer Programming, v. 2, Seminumerical Algorithms, 3rd Ed., Addison-Wesley, Massachusetts, 1998, 762 pp. | MR | MR | Zbl