Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2018_1_a2, author = {S. V. Agievich}, title = {EHE: nonce misuse-resistant message authentication}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {33--41}, publisher = {mathdoc}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDM_2018_1_a2/} }
S. V. Agievich. EHE: nonce misuse-resistant message authentication. Prikladnaâ diskretnaâ matematika, no. 1 (2018), pp. 33-41. http://geodesic.mathdoc.fr/item/PDM_2018_1_a2/
[1] Wegman M.,and Carter J., “New hash functions and their use in authentication and set equality”, J. Comp. and System Sci., 22 (1981), 265–279 | DOI | MR
[2] Shoup V., “On fast and provably secure message authentication based on universal hashing”, CRYPTO'2006, LNCS, 1109, 1996, 313–328
[3] Bernstein D., “Stronger security bounds for Wegman–Carter–Shoup authenticators”, EUROCRYPT'2005, LNCS, 3494, 2005, 164–180 | MR
[4] McGrew D. A., Viega J., “The security and performance of the Galois/Counter Mode (GCM) of operation”, INDOCRYPT'2004, LNCS, 3348, 2004, 343–355 | MR
[5] Dworkin M., Recommendation for Block Cipher Modes of Operation: Galois-Counter Mode (GCM) for Confidentiality and Authentication, ., NIST Special Publication 800-38D, 2007 http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
[6] Rogaway R., Evaluation of Some Blockcipher Modes of Operation, , Cryptography Research and Evaluation Committees (CRYPTREC), 2011 http://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf
[7] Gueron S., Lindell Y., “GCM-SIV: full nonce misuse-resistant authenticated encryption at under one cycle per byte”, Proc. CCS'15, Denver, CO, USA, 2015, 109–119
[8] STB 34.101.31-2011. Informatsionnye Tekhnologii i Bezopasnost'. Zashchita Informatsii. Kriptograficheskie algoritmy shifrovaniya i kontrolya tselostnosti [Information Technology and Security. Data Encryption and Integrity Algorithms], Standard of Belarus, , 2011 (in Russian) http://apmi.bsu.by/assets/files/std/belt-spec27.pdf
[9] Lidl R., Niederraiter H., Finite Fields, Cambridge University Press, 1997 | MR
[10] Patarin J., Etude des Gènèrateurs de Permutations Basès sur le Sch`ema du D.E.S., Ph. D. Thesis, University of Paris, 1991 (in French) | MR
[11] Nandi M., “Improved security analysis for OMAC as a pseudorandom function”, J. Math. Cryptol., 3 (2009), 133–148 | DOI | MR