On extreme joint probabilities of~$k$ events chosen from~$n$ events
Prikladnaâ diskretnaâ matematika, no. 1 (2018), pp. 5-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

An arbitrary probability space with $n$ events is considered. All events have the same probability $p$. No restrictions on correlations between the events are imposed and the events are considered simply as arbitrary subsets of measure $p$ in the probability space. From the set of $n$ events, all $C_n^k$ subsets $X$ consisting of $k$ events are chosen, and for each such subset $X$ the probability $\mathsf P(X)$ of joint implementation of its $k$ events is considered. The subset with the minimum probability $\min_{X\colon|X|=k}\mathsf P(X)$ and the subset with the maximum probability $\max_{X\colon|X|=k}\mathsf P(X)$ are selected. In the paper, exact boundaries for both probabilities are obtained. For minimum probability: \begin{gather*} \text{if}\ kp\le k-1,\quad\text{then}\quad 0\le\min_{X\colon|X|=k}\mathsf P(X)\le p;\\ \text{if}\ kp>k-1,\quad\text{then}\quad kp-k+1\le\min_{X\colon|X|=k}\mathsf P(X)\le p. \end{gather*} For maximum probability: \begin{gather*} \text{if}\ np,\quad\text{then}\quad 0\le\max_{X\colon|X|=k}\mathsf P(X)\le p;\\ \text{if}\ k-1\le np,\quad\text{then}\quad\frac{np-\lfloor np\rfloor}{C_n^k}\le\max_{X\colon|X|=k}\mathsf P(X)\le p;\\ \text{if}\ k\le np,\quad\text{then}\quad\frac{(\lfloor np\rfloor+1-np)C_{\lfloor np\rfloor}^k +(np-\lfloor np\rfloor) C_{\lfloor np\rfloor+1}^k}{C_n^k}\le\max_{X\colon|X|=k}\mathsf P(X)\le p. \end{gather*}
Keywords: event, probability, linear programming, optimum base.
@article{PDM_2018_1_a0,
     author = {Yu. A. Zuev},
     title = {On extreme joint probabilities of~$k$ events chosen from~$n$ events},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--12},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2018_1_a0/}
}
TY  - JOUR
AU  - Yu. A. Zuev
TI  - On extreme joint probabilities of~$k$ events chosen from~$n$ events
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2018
SP  - 5
EP  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2018_1_a0/
LA  - ru
ID  - PDM_2018_1_a0
ER  - 
%0 Journal Article
%A Yu. A. Zuev
%T On extreme joint probabilities of~$k$ events chosen from~$n$ events
%J Prikladnaâ diskretnaâ matematika
%D 2018
%P 5-12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2018_1_a0/
%G ru
%F PDM_2018_1_a0
Yu. A. Zuev. On extreme joint probabilities of~$k$ events chosen from~$n$ events. Prikladnaâ diskretnaâ matematika, no. 1 (2018), pp. 5-12. http://geodesic.mathdoc.fr/item/PDM_2018_1_a0/

[1] Alon N., Spencer J. H., The Probabilistic Method, John Wiley and Sons, N.Y., 2000, 313 pp. | MR

[2] Gnedenko B. V., The Course of Probability Theory, URSS, Moscow, 2015, 448 pp. (in Russian) | MR

[3] Feller W., An Introduction to Probability Theory and its Applications, v. 1, John Wiley and Sons, N.Y., 1970, 527 pp. | MR | MR

[4] Zubkov A. M., “Inequalities for the distribution of the numer of simultaneosly occuring events”, Obozrenie Prikladnoi i Promyshlennoi Matematiki, 1:4 (1994), 638–666 (in Russian)

[5] Frolov A. N., “On the evaluation of the probabilities of the unions of events with application to the Borel–Cantelli lemma”, Vestnik SPbGU, Ser. 1, 2(60):3 (2015), 387–392 (in Russian)

[6] Kolmogorov A. N., The Fundamental Conceptions of Probability Theory, URSS, Moscow, 2016, 120 pp. (in Russian) | MR

[7] Dantzig G. B., Linear programming and extensions, Princeton University Press, Princeton, 1963 | MR