Improvement of the lower bound for the complexity of exponentiation
Prikladnaâ diskretnaâ matematika, no. 4 (2017), pp. 119-132
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $l(x^n)$ be the minimal number of multiplications sufficient for computing $x^n$. In the paper, we improve the lower bound of $l(x^n)$. We establish that for all $\varepsilon >0$ the fraction of the numbers $k$, $k\le n$, satisfying the relation
\begin{equation*}
l(x^k)>\log_2n+\frac{\log_2n}{\log_2\log_2n}\left(1-(2+\varepsilon)\frac{\log_2\log_2\log_2n}{\log_2\log_2n}\right),
\end{equation*}
tends to 1 as $n\to\infty$.
Mots-clés :
addition chains
Keywords: exponentiation, lower bounds of complexity.
Keywords: exponentiation, lower bounds of complexity.
@article{PDM_2017_4_a9,
author = {V. V. Kochergin and D. V. Kochergin},
title = {Improvement of the lower bound for the complexity of exponentiation},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {119--132},
publisher = {mathdoc},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2017_4_a9/}
}
V. V. Kochergin; D. V. Kochergin. Improvement of the lower bound for the complexity of exponentiation. Prikladnaâ diskretnaâ matematika, no. 4 (2017), pp. 119-132. http://geodesic.mathdoc.fr/item/PDM_2017_4_a9/