Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2017_4_a9, author = {V. V. Kochergin and D. V. Kochergin}, title = {Improvement of the lower bound for the complexity of exponentiation}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {119--132}, publisher = {mathdoc}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2017_4_a9/} }
V. V. Kochergin; D. V. Kochergin. Improvement of the lower bound for the complexity of exponentiation. Prikladnaâ diskretnaâ matematika, no. 4 (2017), pp. 119-132. http://geodesic.mathdoc.fr/item/PDM_2017_4_a9/
[1] Knuth D. E., The art of computer programming, v. 2, third edition, Addison-Wesley, Reading, Massachusetts, 1998 | MR | MR | Zbl
[2] Scholz A., “Jahresbericht”, Deutsche Mathematiker-Vereinigung, 47 (1937), 41–42
[3] Subbarao M. V., “Addition chains – some results and problems”, Number Theory and Applications, NATO Advanced Science Institutes Series: Ser. C, 265, ed. R. A. Mollin, Kluwer Academic Publisher Group, 1989, 555–574 | MR
[4] Bos J., Coster M., “Addition chain heuristics”, Crypto'89, LNCS, 435, 1990, 400–407
[5] Gordon D. M., “A survey of fast exponentiation methods”, J. Algorithms, 27 (1998), 129–146 | DOI | MR | Zbl
[6] Thurber E. G., “Efficient generation of minimal length addition chains”, SIAM J. Comput., 28 (1999), 1247–1263 | DOI | MR | Zbl
[7] Bernstein D. J., Pippenger's exponentiation algorithm, , 2002 http://cr.yp.to/papers/pippenger.pdf
[8] Gashkov S. B., “Addition chains problem and its generalizations”, Matematicheskoye Prosveshcheniye. Third series, 15, MTsNMO, Moscow, 2011, 138–153 (in Russian)
[9] Clift N. M., “Calculating optimal addition chains”, Computing, 91 (2011), 265–284 | DOI | MR | Zbl
[10] Kochergin V. V., “Improvement of the estimates of the computational complexity for monomials and sets of powers in Bellman's and Knuth's problems”, J. Appl. Industr. Math., 9:1 (2015), 68–82 | DOI | MR | Zbl
[11] Järvinen K., Dimitrov V., Azarderakhsh R., “A generalization of addition chains and fast inversions in binary fields”, IEEE Trans. Computers, 64:9 (2015), 2421–2432 | DOI | MR | Zbl
[12] Von zur Gathen J., Nocker M., “Exponentiation in finite fields: theory and practice”, LNCS, 1255, 1997, 88–113 | MR | Zbl
[13] Smart N., Cryptography: An Introduction, 3rd edition, McGraw – Hill, 2003
[14] Gashkov S. B., Sergeev I. S., “An application of the method of additive chains to inversion in finite fields”, Discr. Math. Appl., 16:6 (2006), 601–618 | DOI | DOI | MR | Zbl
[15] Brauer A., “On addition chains”, Bull. Amer. Math. Soc., 45 (1939), 736–739 | DOI | MR | Zbl
[16] Erdos P., “Remarks on number theory, III: On addition chains”, Acta Arith., 6 (1960), 77–81 | DOI | MR | Zbl
[17] Il'in A. M., “On addition chains of numbers”, Problemy Kibernetiki, 13, Fizmatlit Publ., Moscow, 1965, 245–248 (in Russian)
[18] Schönhage A. A., “Lower bound for the length of addition chains”, Theor. Comput. Sci., 1 (1975), 1–12 | DOI | MR | Zbl
[19] Savage J. E., The Complexity of Computing, Wiley, New York, 1976 | MR | Zbl
[20] Nigmatullin R. G., The Complexity of Boolean Functions, Nauka Publ., Moscow, 1991 (in Russian) | MR
[21] Lupanov O. B., Asymptotic Estimations of Complexity of Control Systems, MSU Publ., Moscow, 1984 (in Russian)
[22] Riordan J., Shannon C. E., “The number of two-terminal series-parallel networks”, J. Math. Phys. Mass. Inst. Tech., 21:2 (1942), 83–93 ; Riodan Dzh., Shennon K., “Chislo dvukhpolyusnykh parallelno-posledovatelnykh setei”: Shennon K., Raboty po teorii informatsii i kibernetike, Sb., IL, M., 1963, 46–58 | MR
[23] Lozhkin S. A., “More accurate estimations of complexity of control systems for some classes”, Matematicheskiye Voprosy Kibernetiki, 6, Nauka Publ., Moscow, 1996, 189–214 (in Russian) | MR
[24] Lozhkin S. A., “More accurate asymptotic estimations of complexity of Boolean functions realization by logic circuits”, Proc. II Intern. conf. “Diskretnye modeli v teorii upravlyayushchikh sistem” (22–23 June 1997), Dialog-MSU Publ., Moscow, 1997, 37–39 (in Russian)
[25] Kochergin V. V., Kochergin D. V., “Revision of asymptotic behavior of the complexity of word assembly by concatenation circuits”, Moscow University Math. Bull., 71:2 (2016), 55–60 | DOI | MR | Zbl
[26] Volger H., “Some results on addition/subtraction chains”, Inform. Proc. Lett., 20 (1985), 155–160 | DOI | MR | Zbl
[27] Morain F., Olivos J., “Speeding up the computation on an elliptic curve using addition-subtraction chains”, Informatique Théorique et Applications, 24 (1990), 531–544 | DOI | MR
[28] Kochergin V. V., “On the complexity of computations of monomials and tuples of powers.”, Siberian Adv. Math., 6:1 (1996), 71–86 | MR