Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2017_4_a8, author = {A. V. Adelshin and A. K. Kuchin}, title = {Analysis of $L$-structure of polyhedron in the partial {MAX} {SAT} problem}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {110--118}, publisher = {mathdoc}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2017_4_a8/} }
A. V. Adelshin; A. K. Kuchin. Analysis of $L$-structure of polyhedron in the partial MAX SAT problem. Prikladnaâ diskretnaâ matematika, no. 4 (2017), pp. 110-118. http://geodesic.mathdoc.fr/item/PDM_2017_4_a8/
[1] Kolokolov A. A., Yarosh A. V., “Automation of designing complex products using discrete optimization and information technology”, Omsk Scientific Bulletin, 2010, no. 2(90), 234–238 (in Russian)
[2] Posypkin M. A., Zaikin O. S., Bespalov D. V., Semenov A. A., “Solving the problems of cryptanalysis of stream ciphers in distributed computing environments”, Proc. ISA RAS, 46, 2009, 119–137 (in Russian)
[3] Massacci F., Marraro L., “Logical cryptanalysis as a SAT problem”, J. Automated Reasoning, 24 (2000), 165–203 | DOI | MR | Zbl
[4] Marathe M. V., Ravi S. S., “On approximation algorithms for the minimum satisfiability problem”, Inform. Proc. Lett., 58 (1996), 23–29 | DOI | MR | Zbl
[5] Zaikin O. S., Otpushchennikov I. V., Semenov A. A., “Application of the SAT approach to the solution of the quadratic assignment problem”, 15th Baikal Intern. School-Seminar on Optimization Methods and their Applications, Irkutsk, 2011, 111–116 (in Russian)
[6] Kolokolov A. A., Adelshin A. V., Yagofarova D. I., “Solving the SAT problem using the $L$-partition approach”, Information Technologies, 2009, no. 2, 54–59 (in Russian)
[7] Gu J., Purdom P., Franco J., Wah B., “Algorithms for the satisfiability (SAT) problem: a survey”, DIMACS Series in Discr. Math. and Theor. Comput. Sci., 35 (1996), 19–152 | MR
[8] Hamadi Y., Jabbour S., Sais L., “ManySAT: a parallel SAT solver”, J. Satisfiability, Boolean Modeling and Computation, 6 (2009), 245–262 | Zbl
[9] Thornton J., Bain S., Sattar A., Pham D. N., “A two level local search for MAX-SAT problems with hard and soft constraints”, Proc. 15th Australian Joint Conf. on Artificial Intelligence, AustAI-2002, Canberra, Australia, 2002, 603–614 | MR | Zbl
[10] Kolokolov A. A., Adelshin A. V., Yagofarova D. I., “Study of dicrete optimization problems with logical constraints based on regular partitions”, Prikladnaya Diskretnaya Matematika, 2013, no. 1(19), 99–109 (in Russian)
[11] Adelshin A. V., Kuchin A. K., “Development of algorithms for solving the partial MAX SAT problem”, V Russian Conf. “Optimization Problems and their Economical Applications”, Omsk, 2012, 99 (in Russian)
[12] Kolokolov A. A., “Regular partitions and cuts in integer programming”, Siberian J. Operations Research, 1:2 (1994), 18–39 (in Russian) | MR | Zbl
[13] Adel'shin A. V., “Investigation of maximum and minimum satisfiability problems using $L$-partition”, Automation and Remote Control, 65:3 (2004), 388–395 | DOI | MR | Zbl
[14] Kolokolov A., Adelshin A., Yagofarova D., “Analysis and solving SAT and MAX-SAT problems using an $L$-partition approach”, J. Math. Modeling. Algorithms, 12:2 (2013), 201–212 | MR | Zbl
[15] Kolokolov A. A., Adelshin A. V., “Analysis and solving discrete optimization problems with logical constraints on the basis of the $L$-partition approach”, Prikladnaya Diskretnaya Matematika, 2015, no. 4(30), 100–108 (in Russian) | DOI