On minimal vertex $1$-extensions of path orientation
Prikladnaâ diskretnaâ matematika, no. 4 (2017), pp. 89-94

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1976, J. Hayes proposed a graph theoretic model for the study of system fault tolerance by considering faults of nodes. In 1993, the model was expanded to the case of failures of links between nodes. A graph $G^*$ is a $k$-vertex extension of a graph $G$ if every graph obtained by removing $k$ vertex from $G^*$ contains $G$. A $k$-vertex extension $G^*$ of graph $G$ is said to be minimal if it contains $n+k$ vertices, where $n$ is the number of vertices in $G$, and $G^*$ has the minimum number of edges among all $k$-vertex extensions of graph $G$ with $n+k$ vertices. In the paper, the upper and lower bounds for the number of additional arcs $ec(\overrightarrow P_n)$ of a minimal vertex $1$-extension of an oriented path $\overrightarrow P_n$ are obtained. For the oriented path $\overrightarrow P_n$ with ends of different types which is not isomorphic to Hamiltonian path, we have $\lceil({n+1})/6\rceil+2\leq ec(P_n)\leq n+3$. For the oriented path $\overrightarrow P_n$ with ends of equal types, we have $\lceil({n+1})/4\rceil+2\leq ec(P_n)\leq n+3$.
Keywords: minimal vertex extension, node fault tolerance
Mots-clés : path orientation.
@article{PDM_2017_4_a5,
     author = {M. B. Abrosimov and O. V. Modenova},
     title = {On minimal vertex $1$-extensions of path orientation},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {89--94},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2017_4_a5/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - O. V. Modenova
TI  - On minimal vertex $1$-extensions of path orientation
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2017
SP  - 89
EP  - 94
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2017_4_a5/
LA  - ru
ID  - PDM_2017_4_a5
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A O. V. Modenova
%T On minimal vertex $1$-extensions of path orientation
%J Prikladnaâ diskretnaâ matematika
%D 2017
%P 89-94
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2017_4_a5/
%G ru
%F PDM_2017_4_a5
M. B. Abrosimov; O. V. Modenova. On minimal vertex $1$-extensions of path orientation. Prikladnaâ diskretnaâ matematika, no. 4 (2017), pp. 89-94. http://geodesic.mathdoc.fr/item/PDM_2017_4_a5/