On irreducible algebraic sets over linearly ordered semilattices II
Prikladnaâ diskretnaâ matematika, no. 4 (2017), pp. 49-56
Cet article a éte moissonné depuis la source Math-Net.Ru
Equations over finite linearly ordered semilattices are studied. It is assumed that the order of a semilattice is not less than the number of variables in an equation. For any equation $t(X)=s(X)$, we find irreducible components of its solution set. We also compute the average number $\overline{\mathrm{Irr}}(n)$ of irreducible components for all equations in $n$ variables. It turns out that $\overline{\mathrm{Irr}}(n)$ and the function $\frac49n!$ are asymptotically equivalent.
Keywords:
irreducible components, algebraic sets, semilattices.
@article{PDM_2017_4_a2,
author = {A. N. Shevlyakov},
title = {On irreducible algebraic sets over linearly ordered {semilattices~II}},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {49--56},
year = {2017},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PDM_2017_4_a2/}
}
A. N. Shevlyakov. On irreducible algebraic sets over linearly ordered semilattices II. Prikladnaâ diskretnaâ matematika, no. 4 (2017), pp. 49-56. http://geodesic.mathdoc.fr/item/PDM_2017_4_a2/
[1] Shevlyakov A. N., “On irreducible algebraic sets over linearly ordered semilattices.”, Groups, Complexity, Cryptology, 8:2 (2016), 187–196 | DOI | MR
[2] Daniyarova E. Yu., Myasnikov A. G., Remeslennikov V. N., Algebraic Geometry over Algebraic Systems, SB RAS Publ., Novosibirsk, 2016, 243 pp. (in Russian)
[3] Ben-Or M., “Lower bounds for algebraic computation trees”, 15th Ann. Symp. Theory Computing, 1983, 80–86