On irreducible algebraic sets over linearly ordered semilattices~II
Prikladnaâ diskretnaâ matematika, no. 4 (2017), pp. 49-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Equations over finite linearly ordered semilattices are studied. It is assumed that the order of a semilattice is not less than the number of variables in an equation. For any equation $t(X)=s(X)$, we find irreducible components of its solution set. We also compute the average number $\overline{\mathrm{Irr}}(n)$ of irreducible components for all equations in $n$ variables. It turns out that $\overline{\mathrm{Irr}}(n)$ and the function $\frac49n!$ are asymptotically equivalent.
Keywords: irreducible components, algebraic sets, semilattices.
@article{PDM_2017_4_a2,
     author = {A. N. Shevlyakov},
     title = {On irreducible algebraic sets over linearly ordered {semilattices~II}},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {49--56},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2017_4_a2/}
}
TY  - JOUR
AU  - A. N. Shevlyakov
TI  - On irreducible algebraic sets over linearly ordered semilattices~II
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2017
SP  - 49
EP  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2017_4_a2/
LA  - en
ID  - PDM_2017_4_a2
ER  - 
%0 Journal Article
%A A. N. Shevlyakov
%T On irreducible algebraic sets over linearly ordered semilattices~II
%J Prikladnaâ diskretnaâ matematika
%D 2017
%P 49-56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2017_4_a2/
%G en
%F PDM_2017_4_a2
A. N. Shevlyakov. On irreducible algebraic sets over linearly ordered semilattices~II. Prikladnaâ diskretnaâ matematika, no. 4 (2017), pp. 49-56. http://geodesic.mathdoc.fr/item/PDM_2017_4_a2/

[1] Shevlyakov A. N., “On irreducible algebraic sets over linearly ordered semilattices.”, Groups, Complexity, Cryptology, 8:2 (2016), 187–196 | DOI | MR

[2] Daniyarova E. Yu., Myasnikov A. G., Remeslennikov V. N., Algebraic Geometry over Algebraic Systems, SB RAS Publ., Novosibirsk, 2016, 243 pp. (in Russian)

[3] Ben-Or M., “Lower bounds for algebraic computation trees”, 15th Ann. Symp. Theory Computing, 1983, 80–86