Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2017_3_a0, author = {M. I. Anokhin}, title = {On the two definitions of degree of a~function over an associative, commutative ring}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {5--19}, publisher = {mathdoc}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2017_3_a0/} }
M. I. Anokhin. On the two definitions of degree of a~function over an associative, commutative ring. Prikladnaâ diskretnaâ matematika, no. 3 (2017), pp. 5-19. http://geodesic.mathdoc.fr/item/PDM_2017_3_a0/
[1] Logachev O. A., Sal'nikov A. A., Yashchenko V. V., “Some characteristics of “nonlinearity” of group mappings”, Diskretn. Anal. Issled. Oper. Ser. 1, 8:1 (2001), 40–54 (in Russian) | MR | Zbl
[2] Anokhin M. I., “On some sets of group functions”, Math. Notes, 74:1 (2003), 3–11 | DOI | DOI | MR | Zbl
[3] Cheremushkin A. V., “An additive approach to nonlinear degree of discrete function”, Prikladnaya Diskretnaya Matematika, 2010, no. 2(8), 22–33 (in Russian)
[4] Cheremushkin A. V., “An additive approach to nonlinearity degree of discrete functions on a primary cyclic group”, Prikladnaya Diskretnaya Matematika, 2013, no. 2(20), 26–38 (in Russian)
[5] Fuchs L., Infinite Abelian Groups, v. I, Academic Press, 1970 ; Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974 ; v. II, 1973; v. 2, 1977 | MR | Zbl | MR
[6] Fuchs L., Abelian Groups, Springer, 2015 | MR | Zbl
[7] Schultz P., “The endomorphism ring of the additive group of a ring”, J. Austral. Math. Soc., 15:1 (1973), 60–69 | DOI | MR | Zbl
[8] Bowshell R. A., Schultz P., “Unital rings whose additive endomorphisms commute”, Math. Ann., 228:3 (1977), 197–214 | DOI | MR | Zbl
[9] Riordan J., Combinatorial identities, John Wiley Sons, 1968 ; Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR | Zbl | MR
[10] Jaballah A., “Subrings of $\mathbf Q$”, J. Sci. Technol., 2:2 (1997), 1–13
[11] Dimitrić R., “On coslender groups”, Glasnik Matem., 21(41):2 (1986), 327–329 | MR | Zbl