On the two definitions of degree of a~function over an associative, commutative ring
Prikladnaâ diskretnaâ matematika, no. 3 (2017), pp. 5-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an associative, commutative ring and let $\varphi\colon R^m\to R$, where $m\ge0$. Denote by $\deg_\Pi\varphi$ the smallest integer $n\ge-1$ such that $\varphi$ can be represented by an $m$-variate polynomial of degree $n$ over $R$. (By convention, the degree of the zero polynomial is $-1$.) Also, let $\deg_\mathrm{RM}\varphi$ denote the smallest integer $n\ge-1$ such that $\partial_{v_1}\dots\partial_{v_{n+1}}\varphi=0$ for all $v_1,\dots,v_{n+1}\in R^m$. Here $(\partial_v\psi)(x)=\psi(x+v)-\psi(x)$ for any $v,x\in R^m$ and any function $\psi\colon R^m\to R$. If no such integer $n$ exists, then we put $\deg_\Pi\varphi=\infty$ or $\deg_\mathrm{RM}\varphi=\infty$, respectively. In this paper, we study the problem of characterizing the class $\mathfrak D$ of all associative, commutative rings $R$ such that these degrees coincide for functions over $R$, i.e., $\deg_\Pi\varphi=\deg_\mathrm{RM}\varphi$ for all $m\ge0$ and all functions $\varphi\colon R^m\to R$. We solve this problem when the additive group $\mathcal R$ of the ring $R$ belongs to some large classes of abelian groups. Namely, our main results are as follows: 1) if $\mathcal R$ is torsion or finitely generated, then $R\in\mathfrak D$ if and only if $R\cong\mathbb Z/d\mathbb Z$ for some square-free integer $d\ge1$; 2) if $\mathcal R$ is not reduced, then $R\in\mathfrak D$ if and only if $R\cong(\mathbb Z/d\mathbb Z)\oplus\mathbb Q$ for some square-free integer $d\ge1$; 3) if $\mathcal R$ is a direct sum of rank $1$ subgroups, then $R\in\mathfrak D$ if and only if $R\cong\mathbb Z/d\mathbb Z$ or $R\cong(\mathbb Z/d\mathbb Z)\oplus\mathbb Q$ for some square-free integer $d\ge1$; 4) if $\mathcal R$ is reduced and cotorsion, then $R\in\mathfrak D$ if and only if $R\cong\prod_{p\in P}(\mathbb Z/p\mathbb Z)$ for some set $P$ of prime numbers. The proof of these results is based on the fact that any ring in $\mathfrak D$ is an $E$-ring.
Keywords: associative ring, commutative ring, Abelian group, additive group of a ring, degree of a function, $E$-ring, Newton's formula.
Mots-clés : polynomial
@article{PDM_2017_3_a0,
     author = {M. I. Anokhin},
     title = {On the two definitions of degree of a~function over an associative, commutative ring},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--19},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2017_3_a0/}
}
TY  - JOUR
AU  - M. I. Anokhin
TI  - On the two definitions of degree of a~function over an associative, commutative ring
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2017
SP  - 5
EP  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2017_3_a0/
LA  - ru
ID  - PDM_2017_3_a0
ER  - 
%0 Journal Article
%A M. I. Anokhin
%T On the two definitions of degree of a~function over an associative, commutative ring
%J Prikladnaâ diskretnaâ matematika
%D 2017
%P 5-19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2017_3_a0/
%G ru
%F PDM_2017_3_a0
M. I. Anokhin. On the two definitions of degree of a~function over an associative, commutative ring. Prikladnaâ diskretnaâ matematika, no. 3 (2017), pp. 5-19. http://geodesic.mathdoc.fr/item/PDM_2017_3_a0/

[1] Logachev O. A., Sal'nikov A. A., Yashchenko V. V., “Some characteristics of “nonlinearity” of group mappings”, Diskretn. Anal. Issled. Oper. Ser. 1, 8:1 (2001), 40–54 (in Russian) | MR | Zbl

[2] Anokhin M. I., “On some sets of group functions”, Math. Notes, 74:1 (2003), 3–11 | DOI | DOI | MR | Zbl

[3] Cheremushkin A. V., “An additive approach to nonlinear degree of discrete function”, Prikladnaya Diskretnaya Matematika, 2010, no. 2(8), 22–33 (in Russian)

[4] Cheremushkin A. V., “An additive approach to nonlinearity degree of discrete functions on a primary cyclic group”, Prikladnaya Diskretnaya Matematika, 2013, no. 2(20), 26–38 (in Russian)

[5] Fuchs L., Infinite Abelian Groups, v. I, Academic Press, 1970 ; Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974 ; v. II, 1973; v. 2, 1977 | MR | Zbl | MR

[6] Fuchs L., Abelian Groups, Springer, 2015 | MR | Zbl

[7] Schultz P., “The endomorphism ring of the additive group of a ring”, J. Austral. Math. Soc., 15:1 (1973), 60–69 | DOI | MR | Zbl

[8] Bowshell R. A., Schultz P., “Unital rings whose additive endomorphisms commute”, Math. Ann., 228:3 (1977), 197–214 | DOI | MR | Zbl

[9] Riordan J., Combinatorial identities, John Wiley Sons, 1968 ; Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR | Zbl | MR

[10] Jaballah A., “Subrings of $\mathbf Q$”, J. Sci. Technol., 2:2 (1997), 1–13

[11] Dimitrić R., “On coslender groups”, Glasnik Matem., 21(41):2 (1986), 327–329 | MR | Zbl