On the two definitions of degree of a~function over an associative, commutative ring
Prikladnaâ diskretnaâ matematika, no. 3 (2017), pp. 5-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an associative, commutative ring and let $\varphi\colon R^m\to R$, where $m\ge0$. Denote by $\deg_\Pi\varphi$ the smallest integer $n\ge-1$ such that $\varphi$ can be represented by an $m$-variate polynomial of degree $n$ over $R$. (By convention, the degree of the zero polynomial is $-1$.) Also, let $\deg_\mathrm{RM}\varphi$ denote the smallest integer $n\ge-1$ such that $\partial_{v_1}\dots\partial_{v_{n+1}}\varphi=0$ for all $v_1,\dots,v_{n+1}\in R^m$. Here $(\partial_v\psi)(x)=\psi(x+v)-\psi(x)$ for any $v,x\in R^m$ and any function $\psi\colon R^m\to R$. If no such integer $n$ exists, then we put $\deg_\Pi\varphi=\infty$ or $\deg_\mathrm{RM}\varphi=\infty$, respectively. In this paper, we study the problem of characterizing the class $\mathfrak D$ of all associative, commutative rings $R$ such that these degrees coincide for functions over $R$, i.e., $\deg_\Pi\varphi=\deg_\mathrm{RM}\varphi$ for all $m\ge0$ and all functions $\varphi\colon R^m\to R$. We solve this problem when the additive group $\mathcal R$ of the ring $R$ belongs to some large classes of abelian groups. Namely, our main results are as follows: 1) if $\mathcal R$ is torsion or finitely generated, then $R\in\mathfrak D$ if and only if $R\cong\mathbb Z/d\mathbb Z$ for some square-free integer $d\ge1$; 2) if $\mathcal R$ is not reduced, then $R\in\mathfrak D$ if and only if $R\cong(\mathbb Z/d\mathbb Z)\oplus\mathbb Q$ for some square-free integer $d\ge1$; 3) if $\mathcal R$ is a direct sum of rank $1$ subgroups, then $R\in\mathfrak D$ if and only if $R\cong\mathbb Z/d\mathbb Z$ or $R\cong(\mathbb Z/d\mathbb Z)\oplus\mathbb Q$ for some square-free integer $d\ge1$; 4) if $\mathcal R$ is reduced and cotorsion, then $R\in\mathfrak D$ if and only if $R\cong\prod_{p\in P}(\mathbb Z/p\mathbb Z)$ for some set $P$ of prime numbers. The proof of these results is based on the fact that any ring in $\mathfrak D$ is an $E$-ring.
Keywords: associative ring, commutative ring, Abelian group, additive group of a ring, degree of a function, $E$-ring, Newton's formula.
Mots-clés : polynomial
@article{PDM_2017_3_a0,
     author = {M. I. Anokhin},
     title = {On the two definitions of degree of a~function over an associative, commutative ring},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--19},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2017_3_a0/}
}
TY  - JOUR
AU  - M. I. Anokhin
TI  - On the two definitions of degree of a~function over an associative, commutative ring
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2017
SP  - 5
EP  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2017_3_a0/
LA  - ru
ID  - PDM_2017_3_a0
ER  - 
%0 Journal Article
%A M. I. Anokhin
%T On the two definitions of degree of a~function over an associative, commutative ring
%J Prikladnaâ diskretnaâ matematika
%D 2017
%P 5-19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2017_3_a0/
%G ru
%F PDM_2017_3_a0
M. I. Anokhin. On the two definitions of degree of a~function over an associative, commutative ring. Prikladnaâ diskretnaâ matematika, no. 3 (2017), pp. 5-19. http://geodesic.mathdoc.fr/item/PDM_2017_3_a0/