On generic NP-completeness of the Boolean satisfiability problem
Prikladnaâ diskretnaâ matematika, no. 2 (2017), pp. 106-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generic-case approach to algorithmic problems was suggested by Miasnikov, Kapovich, Schupp and Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. Many classical undecidable or hard algorithmic problems become feasible in the generic case. But there are generically hard problems. In this paper we introduce a notion of generic polynomial reducibility algorithmic problems, which preserve the property of polynomial decidability of the problem for almost all inputs and has the property of transitivity. It is proved that the classical satisfiability problem of Boolean formulas is complete with respect to this generic reducibility in the generic analogue of class NP.
Keywords: generic complexity, Boolean satisfiability problem, NP-completeness.
@article{PDM_2017_2_a7,
     author = {A. N. Rybalov},
     title = {On generic {NP-completeness} of the {Boolean} satisfiability problem},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {106--112},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2017_2_a7/}
}
TY  - JOUR
AU  - A. N. Rybalov
TI  - On generic NP-completeness of the Boolean satisfiability problem
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2017
SP  - 106
EP  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2017_2_a7/
LA  - ru
ID  - PDM_2017_2_a7
ER  - 
%0 Journal Article
%A A. N. Rybalov
%T On generic NP-completeness of the Boolean satisfiability problem
%J Prikladnaâ diskretnaâ matematika
%D 2017
%P 106-112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2017_2_a7/
%G ru
%F PDM_2017_2_a7
A. N. Rybalov. On generic NP-completeness of the Boolean satisfiability problem. Prikladnaâ diskretnaâ matematika, no. 2 (2017), pp. 106-112. http://geodesic.mathdoc.fr/item/PDM_2017_2_a7/

[1] Garey M., Johnson D., Computers and Intractability, Freeman Co, N.Y., 1979, 340 pp. | MR | MR | Zbl

[2] Levin L., “Average case complete problems”, SIAM J. Computing, 15 (1987), 285–286 | DOI | MR

[3] Gurevich Y., “Average case completeness”, J. Computer System Sciences, 42 (1991), 346–398 | DOI | MR | Zbl

[4] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl

[5] Gilman R., Miasnikov A. G., Myasnikov A. D., Ushakov A., “Report on generic case complexity”, Herald of Omsk University, 2007, Special Issue, 103–110

[6] Impagliazzo R., Wigderson A., “P=BPP unless E has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR

[7] Cook S. A., “The complexity of theorem proving procedures”, Proc. 3d Annual ACM Symposium on Theory of Computing, N.Y., USA, 1971, 151–158 | DOI | Zbl

[8] Rybalov A., “On generic complexity of the validity problem for Boolean formulas”, Prikladnaya Diskretnaya Matematika, 2016, no. 2(32), 119–126 (in Russian) | MR