@article{PDM_2017_2_a7,
author = {A. N. Rybalov},
title = {On generic {NP-completeness} of the {Boolean} satisfiability problem},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {106--112},
year = {2017},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2017_2_a7/}
}
A. N. Rybalov. On generic NP-completeness of the Boolean satisfiability problem. Prikladnaâ diskretnaâ matematika, no. 2 (2017), pp. 106-112. http://geodesic.mathdoc.fr/item/PDM_2017_2_a7/
[1] Garey M., Johnson D., Computers and Intractability, Freeman Co, N.Y., 1979, 340 pp. | MR | MR | Zbl
[2] Levin L., “Average case complete problems”, SIAM J. Computing, 15 (1987), 285–286 | DOI | MR
[3] Gurevich Y., “Average case completeness”, J. Computer System Sciences, 42 (1991), 346–398 | DOI | MR | Zbl
[4] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[5] Gilman R., Miasnikov A. G., Myasnikov A. D., Ushakov A., “Report on generic case complexity”, Herald of Omsk University, 2007, Special Issue, 103–110
[6] Impagliazzo R., Wigderson A., “P=BPP unless E has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR
[7] Cook S. A., “The complexity of theorem proving procedures”, Proc. 3d Annual ACM Symposium on Theory of Computing, N.Y., USA, 1971, 151–158 | DOI | Zbl
[8] Rybalov A., “On generic complexity of the validity problem for Boolean formulas”, Prikladnaya Diskretnaya Matematika, 2016, no. 2(32), 119–126 (in Russian) | MR