Cryptautomata with functional keys
Prikladnaâ diskretnaâ matematika, no. 2 (2017), pp. 59-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we describe the cryptautomata and some cryptanalysis techniques for them. In cryptographic systems, the cryptautomata are widely used as its primitives including key-stream generators, s-boxes, cryptofilters, cryptocombiners, key hash functions as well as symmetric and public-key ciphers, digital signature schemes. Here, a cryptautomaton is defined as a class $C$ of automata networks of a fixed structure $N$ constructed by means of the series, parallel, and feedback connection operations over initial finite automata (finite state machines) with transition and output functions taken from some predetermined functional classes. A cryptautomaton key can include initial states, transition and output functions of some components in $N$. The choosing a certain key $k$ produces a certain network $N_k$ from $C$ to be a cryptographic algorithm. In case of invertibility of $N_k$, this algorithm can be used for encryption. The operation (functioning) of any network $N_k$ in the discrete time is described by the canonical system of equations of its automaton. The structure of $N_k$ is described by the union of canonical systems of equations of its components. The cryptanalysis problems for a cryptautomaton are considered as the problems of solving the operational or structural system of equations of $N_k$ with the corresponding unknowns that are key $k$ variables and (or) plaintexts (input sequences). For solving such a system $E$, the method DSS is used. It is the iteration of the following three actions: 1) $E$ is Divided into subsystems $E'$ and $E''$, where $E'$ is easy solvable; 2) $E'$ is Solved; 3) the solutions of $E'$ are Substituted into $E''$ by turns. The definition and cryptanalysis of a cryptautomaton are illustrated by giving the example of the autonomous cryptautomaton with the alternative control. It is a generalization of the LFSR-based cryptographic alternating step generator. We present a number of attacks on this cryptautomaton with the states or output functions of its components as a key.
Keywords: finite automaton, automata network, cryptautomaton generator with alternative control, linearization attack, “devide-and-solve-and-substitute”, partially defined function completion.
Mots-clés : cryptautomaton, cryptanalysis
@article{PDM_2017_2_a4,
     author = {G. P. Agibalov},
     title = {Cryptautomata with functional keys},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {59--72},
     year = {2017},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2017_2_a4/}
}
TY  - JOUR
AU  - G. P. Agibalov
TI  - Cryptautomata with functional keys
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2017
SP  - 59
EP  - 72
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/PDM_2017_2_a4/
LA  - ru
ID  - PDM_2017_2_a4
ER  - 
%0 Journal Article
%A G. P. Agibalov
%T Cryptautomata with functional keys
%J Prikladnaâ diskretnaâ matematika
%D 2017
%P 59-72
%N 2
%U http://geodesic.mathdoc.fr/item/PDM_2017_2_a4/
%G ru
%F PDM_2017_2_a4
G. P. Agibalov. Cryptautomata with functional keys. Prikladnaâ diskretnaâ matematika, no. 2 (2017), pp. 59-72. http://geodesic.mathdoc.fr/item/PDM_2017_2_a4/

[1] Agibalov G. P., “Finite automata in cryptography”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2009, no. 2, 43–73 (in Russian)

[2] Tao R., Finite Automata and Application to Cryptography., TSINGHUA University Press, 2009, 406 pp. | MR

[3] Agibalov G. P., Pankratova I. A., “About 2-cascade finite automata cryptographic generators and their cryptanalysis”, Prikladnaya Diskretnaya Matematika, 2017, no. 35, 38–47 (in Russian)

[4] Agibalov G. P., Pankratova I. A., “To cryptanalysis of 2-cascade finite automata cryptographic generators”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2016, no. 9, 41–43 (in Russian)

[5] Agibalov G. P., “Logical equations in cryptanalysis of key stream generators”, Vestnik TSU. Prilozhenie, 2003, no. 6, 31–41 (in Russian)

[6] Menezes A., van Oorshot P., Vanstone S., Handbook of Applied Cryptography, CRC Press Inc., 1997, 661 pp. | MR | Zbl

[7] Fomichev V. M., Discrete Mathematics and Cryptology, DIALOG-MEPhI Publ., Moscow, 2003, 400 pp. (in Russian)

[8] Agibalov G. P., “Some completions of partial Boolean function”, Trudy SPhTI, 49, 1970, 12–19 (in Russian)

[9] Agibalov G. P., Sungurova O. G., “Cryptanalysis of a finite-state keystream generator with an output function as a key”, Vestnik TSU. Prilozhenie, 2006, no. 17, 104–108 (in Russian)

[10] Agibalov G. P., “Methods for solving systems of polynomial equations over a finite field”, Vestnik TSU. Prilozhenie, 2006, no. 17, 4–9 (in Russian)