Mots-clés : Gauss sum.
@article{PDM_2017_2_a2,
author = {M. M. Glukhov and O. V. Kamlovskii},
title = {Application of {Gauss} sums to calculate the exact values of the number of appearances of elements on cycles of linear recurrences},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {25--50},
year = {2017},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2017_2_a2/}
}
TY - JOUR AU - M. M. Glukhov AU - O. V. Kamlovskii TI - Application of Gauss sums to calculate the exact values of the number of appearances of elements on cycles of linear recurrences JO - Prikladnaâ diskretnaâ matematika PY - 2017 SP - 25 EP - 50 IS - 2 UR - http://geodesic.mathdoc.fr/item/PDM_2017_2_a2/ LA - ru ID - PDM_2017_2_a2 ER -
%0 Journal Article %A M. M. Glukhov %A O. V. Kamlovskii %T Application of Gauss sums to calculate the exact values of the number of appearances of elements on cycles of linear recurrences %J Prikladnaâ diskretnaâ matematika %D 2017 %P 25-50 %N 2 %U http://geodesic.mathdoc.fr/item/PDM_2017_2_a2/ %G ru %F PDM_2017_2_a2
M. M. Glukhov; O. V. Kamlovskii. Application of Gauss sums to calculate the exact values of the number of appearances of elements on cycles of linear recurrences. Prikladnaâ diskretnaâ matematika, no. 2 (2017), pp. 25-50. http://geodesic.mathdoc.fr/item/PDM_2017_2_a2/
[1] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 2, Gelios ARV Publ., Moscow, 2003, 416 pp. (in Russian)
[2] Lidl R., Niederreiter H., Finite Fields, Addison-Wesley Publ., 1983 | MR | MR | Zbl
[3] McEliece R. J., “Irreducible cyclic codes and Gauss sums”, Combinatorics, 1975, 185–202 | DOI
[4] Tsirler N., “Linear recurrence sequences”, Kiberneticheskiy Sbornik, 1963, no. 6, 55–79 (in Russian)
[5] Laksov D., “Linear recurring sequences over finite fields”, Matematika. Sbornik perevodov, 11:6 (1967), 145–158 (in Russian)
[6] Baumert L. D., McEliece R. J., “Weights of irreducible cyclic codes”, Information and Control, 20 (1972), 158–175 | DOI | MR | Zbl
[7] Nelubin A. S., “Distribution of elements on cycles of linear recurrences over Galois fields”, Formal Power Series and Algebraic Combinatorics, 12-th Intern. Conf. FPSAC, Moscow, 2000, 534–542 | DOI | MR | Zbl