Improving the rate of convergence in the multidimensional central limit theorem for sums of locally dependent random vectors
Prikladnaâ diskretnaâ matematika, no. 2 (2017), pp. 13-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates of the rate of convergence in multidimensional limit theorems for sums of dependent random vectors are considered in many papers. The types of dependence in a sequence of random vectors can be different, for example, $m$-dependent and locally dependent sequences of random vectors. It is important that these estimates are implicit. They do not specify how the estimate depends on the dimension of random vectors. In this connection, in one of the author's previous papers, an explicit estimate for the distance between a multidimensional normal distribution and the distribution of the sum of locally dependent random vectors was obtained. In this paper, we improve this estimate. Also, it is proved that for centered and normalized sums of independent random vectors, the order of this estimate is equal to $d^{9/2}n^{-1/2}\ln n,$ where $d$ is dimension and $n$ is number of vectors. Results of this paper have applications for discrete mathematical objects. For example, in the paper we consider a fixed regular graph. Each vertex is independently assigned one of the colors with a certain probability. A condition for the normal approximation of the number of edges incident to vertices of the same color is obtained.
Keywords: multivariate CLT, locally dependent random vectors.
@article{PDM_2017_2_a1,
     author = {A. V. Volgin},
     title = {Improving the rate of convergence in the multidimensional central limit theorem for sums of locally dependent random vectors},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {13--24},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2017_2_a1/}
}
TY  - JOUR
AU  - A. V. Volgin
TI  - Improving the rate of convergence in the multidimensional central limit theorem for sums of locally dependent random vectors
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2017
SP  - 13
EP  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2017_2_a1/
LA  - ru
ID  - PDM_2017_2_a1
ER  - 
%0 Journal Article
%A A. V. Volgin
%T Improving the rate of convergence in the multidimensional central limit theorem for sums of locally dependent random vectors
%J Prikladnaâ diskretnaâ matematika
%D 2017
%P 13-24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2017_2_a1/
%G ru
%F PDM_2017_2_a1
A. V. Volgin. Improving the rate of convergence in the multidimensional central limit theorem for sums of locally dependent random vectors. Prikladnaâ diskretnaâ matematika, no. 2 (2017), pp. 13-24. http://geodesic.mathdoc.fr/item/PDM_2017_2_a1/

[1] Götze F., “On the rate of convergence in the multivariate CLT”, Ann. Probab., 19 (1991), 724–739 | DOI | MR | Zbl

[2] Sunklodas J., “Convergence rate estimate in central limit theorem for $m$-dependent random vectors”, Lithuanian Math. J., 18:4 (1978), 566–575 | DOI | MR | Zbl

[3] Goldstein L., Rinott Y., “Multivariate normal approximations by Stein's method and size bias couplings”, Appl. Probab., 33 (1996), 1–17 | DOI | MR | Zbl

[4] Reinert G., Röllin A., “Multivariate normal approximation with Stein's method of exchangeable pairs under a general linearity condition”, Ann. Probab., 37 (2009), 2150–2173 | DOI | MR | Zbl

[5] Rinott Y., Rotar V. I., “A multivariate CLT for local dependence with $n^{-1/2}\log n$ rate and applications to multivariate graph related statistics”, J. Multivariate Analysis, 56 (1996), 333–350 | DOI | MR | Zbl

[6] Volgin A. V., “An improved estimate for the convergence rate in the multidimensional central limit theorem”, Prikladnaya Diskretnaya Matematika. Prilozhenie, 2013, no. 6, 11–12 (in Russian)

[7] Volgin A. V., “On the accuracy estimation for the multidimensional normal approximation of locally dependent random vectors sums”, Obozrenie Prikl. i Promyshl. Matem., 22:4 (2015), 11–30 (in Russian)

[8] Zorich V. A., Mathematical Analysis, P. I, MCCME Publ., Moscow, 2002, 664 pp. (in Russian) | MR

[9] Shiryaev A. N., Probability-1, MCCME Publ., Moscow, 2007, 552 pp. (in Russian) | MR