Random equations over free semilattices
Prikladnaâ diskretnaâ matematika, no. 2 (2017), pp. 5-12

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study equations in one variable over free semilattices. We show that the average number of solutions of a random equation over a free semilattice of a rank $n$ is equal to $\frac{3^n+2\cdot2^n}{3\cdot2^n}$. It is proved that the average number of irreducible components of algebraic sets defined by equations over a free semilattice of a countable rank is equal to 1.
Keywords: free semilattice, irreducible components.
Mots-clés : equation
@article{PDM_2017_2_a0,
     author = {M. A. Vakhrameev},
     title = {Random equations over free semilattices},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--12},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2017_2_a0/}
}
TY  - JOUR
AU  - M. A. Vakhrameev
TI  - Random equations over free semilattices
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2017
SP  - 5
EP  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2017_2_a0/
LA  - ru
ID  - PDM_2017_2_a0
ER  - 
%0 Journal Article
%A M. A. Vakhrameev
%T Random equations over free semilattices
%J Prikladnaâ diskretnaâ matematika
%D 2017
%P 5-12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2017_2_a0/
%G ru
%F PDM_2017_2_a0
M. A. Vakhrameev. Random equations over free semilattices. Prikladnaâ diskretnaâ matematika, no. 2 (2017), pp. 5-12. http://geodesic.mathdoc.fr/item/PDM_2017_2_a0/