Random equations over free semilattices
Prikladnaâ diskretnaâ matematika, no. 2 (2017), pp. 5-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study equations in one variable over free semilattices. We show that the average number of solutions of a random equation over a free semilattice of a rank $n$ is equal to $\frac{3^n+2\cdot2^n}{3\cdot2^n}$. It is proved that the average number of irreducible components of algebraic sets defined by equations over a free semilattice of a countable rank is equal to 1.
Keywords: free semilattice, irreducible components.
Mots-clés : equation
@article{PDM_2017_2_a0,
     author = {M. A. Vakhrameev},
     title = {Random equations over free semilattices},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--12},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2017_2_a0/}
}
TY  - JOUR
AU  - M. A. Vakhrameev
TI  - Random equations over free semilattices
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2017
SP  - 5
EP  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2017_2_a0/
LA  - ru
ID  - PDM_2017_2_a0
ER  - 
%0 Journal Article
%A M. A. Vakhrameev
%T Random equations over free semilattices
%J Prikladnaâ diskretnaâ matematika
%D 2017
%P 5-12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2017_2_a0/
%G ru
%F PDM_2017_2_a0
M. A. Vakhrameev. Random equations over free semilattices. Prikladnaâ diskretnaâ matematika, no. 2 (2017), pp. 5-12. http://geodesic.mathdoc.fr/item/PDM_2017_2_a0/

[1] Gilman R., Myasnikov A., Roman'kov V., “Random equations in nilpotent groups”, J. Algebra, 352:1 (2012), 192–214 | DOI | MR | Zbl

[2] Gilman R., Myasnikov A., Roman'kov V., “Random equations in free groups”, Groups Complexity Cryptol, 3:2 (2011), 257–284 | DOI | MR | Zbl

[3] Roman'kov V., “Equations over groups”, Groups Complexity Cryptol., 4:2 (2012), 191–239 | MR | Zbl

[4] Daniyarova E., Miasnikov A., Remeslennikov V., “Unification theorems in algebraic geometry”, Aspects of infinite groups, Algebra and Discrete Mathematics, 1, Hackensack, 2008, 80–111 | MR | Zbl

[5] Daniyarova E. Yu., Myasnikov A. G., Remeslennikov V. N, “Algebraic geometry over algebraic structures. II. Foundations”, Fundam. Prikl. Mat., 17:1 (2012), 65–106 (in Russian) | Zbl

[6] Shevlyakov A. N., “Equivalent equations in semilattices”, Sib. Elektron. Mat. Izv., 13 (2016), 478–490 (in Russian) | DOI | MR | Zbl

[7] Shevlyakov A. N., “Elements of algebraic geometry over a free semilattice”, Algebra Logika, 54:3 (2015), 399–420 (in Russian) | DOI | MR | Zbl