Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2017_1_a8, author = {O. L. Bandman}, title = {Cellular-automata models of natural processes, implementation on supercomputers}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {102--121}, publisher = {mathdoc}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2017_1_a8/} }
O. L. Bandman. Cellular-automata models of natural processes, implementation on supercomputers. Prikladnaâ diskretnaâ matematika, no. 1 (2017), pp. 102-121. http://geodesic.mathdoc.fr/item/PDM_2017_1_a8/
[1] Von Neumann J., The Theory of Self-Reproducing Automata, Mir Publ., Moscow, 1971, 384 pp. (in Russian)
[2] Wolfram S., “Computation theory of cellular automata”, Commun. Math. Phys., 96 (1984), 15–57 | DOI | MR | Zbl
[3] Sandefur J. T., Discrete Dynamical Systems: Theory and Applications, University Press, Oxford, 1990, 445 pp. | MR
[4] Donienunzio A., Formenti E., Kurka P., “Cellular automata dynamical systems”, Handbook of Natural Computing, v. 1, eds. G. Rozenberg, T. Bäck, J. N. Kok, Springer, Berlin, 2012, 24–76
[5] Wolfram S., “Statistical mechanics of cellular automata”, Rev. Mod. Phys., 35 (1983), 601–643 | DOI | MR
[6] Toffolli T., Margolus N., Cellular Automata Machines: A New Environment for Modeling, MIT-Press, USA, 1987, 260 pp.
[7] Frish U., Hasslacher B., Pomeau Y., “Lattice-gas automata for Navier–Stokes equation”, Phys. Rev. Let., 56 (1986), 1505–1508 | DOI
[8] Wolfram S., A New Kind of Science, Wolfram Media Inc., Champaign, Ill., USA, 2002, 1197 pp. | MR | Zbl
[9] Weimar J., “Cellular automata for reaction-diffusion systems”, Parallel Computing, 23:11 (1997), 1699–1715 | DOI | MR
[10] Vanag V. K., Dissipative Structures in Reaction-Diffusion Systems, Institute of Computer Science Publ., Izhevsk, 2008, 300 pp. (in Russian)
[11] Madore B., Freedman W., “Computer simulation of the Belousov–Zhabotinski reaction”, Science, 222 (1983), 615–618 | DOI
[12] Park J. K., Steiglitz K., Thurston W. P., “Soliton-like behavior in automata”, Physica D, 19 (1986), 423–432 | DOI | MR | Zbl
[13] Achasova S., Bandman O., Markova V., Piskunov S., Parallel Substitution Algorithm. Theory and Application, World Scientific, Singapore, 1994, 198 pp. | Zbl
[14] Bandman O. L., “Cellular automata models of spatial dynamics”, System Informatics, 2006, no. 10, 59–111 (in Russian)
[15] Achasova S. M., Bandman O. L., The Correctness of Parallel Computing Processes, Nauka Publ., Novosibirsk, 1990, 256 pp. (in Russian) | MR
[16] Bandman O., “Parallel simulation of asynchronous cellular automata evolution”, ACRI-2006, LNCS, 4173, 2006, 41–47 | MR | Zbl
[17] Sharifulina A., Elokhin V., “Simulation of heterogeneous catalytic reaction by asynchronous cellular automata on multicomputer”, PaCT-2011, LNCS, 6873, 2011, 210–216
[18] Sharifulina A. E., “Parallel implementation of the catalytic reaction $(\mathrm{CO}+ \mathrm O_2\to\mathrm{CO}_2)$ using an asynchronous cellular automaton”, Proc. PaVT-2012, SUSU Publ., Chelyabinsk, 2012, 325–335 (in Russian)
[19] Bandman O., “Cellular automata composition techniques for spatial dynamics simulation”, Simulating Complex Systems by Cellular Automata, eds. A. G. Hoekstra, J. Kroc, P. M. A. Sloot, Springer, Berlin, 2010, 81–116 | DOI
[20] Bandman O., “Using multi core computers for implementing cellular automata systems”, PaCT-2011, LNCS, 6873, 2011, 45–58
[21] Medvedev Yu. G., “An extension of the cellular-automaton FHP-I flow model to the FHP-MP multi- particle model”, Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tekhnika i informatika, 2009, no. 1(6), 33–40 (in Russian)
[22] Medvedev Yu. G., “The 3D fluid flow simulation”, Vestnik Tomskogo gosudarstvennogo universiteta. Prilozhenie, 2002, no. 1(II), 236–240 (in Russian)
[23] Medvedev Yu. G., “Many-cellular automata models of diffusion process”, Novye inf. tekhnologii v issled. slozhnykh struktur, Tez. dokl., NTL Publ., Tomsk, 2010, 21–22 (in Russian)
[24] Bandman O., “Cellular automata diffusion models for multicomputer implementation”, Bull. Nov. Comp. Center. Ser. Comp. Sci., 36 (2014), 21–31 | Zbl
[25] Medvedev Yu. G., “Applying the cellular automaton model of a viscous fluid flow in investigating 3D porous media”, Avtometriya, 42:3 (2006), 21–31 (in Russian)
[26] Medvedev Yu. G., “The software package for cellular automata modeling of gas-powder flow”, Proc. PaVT-2012, SUSU Publ., Chelyabinsk, 2012, 732 (in Russian)
[27] Wolf-Gladrow D., Lattice-Gas Cellular Automata and Lattice Boltzmann Models, Springer, Berlin, 2000, 310 pp. | MR | Zbl
[28] Chetverushkin B. N., Kinetically consistent schemes in gas dynamics: the new model of a viscous gas, algorithms, parallel implementation, application, MSU Publ., Moscow, 1999, 232 pp. (in Russian)
[29] Numerical Algorithms and Round-off Errors, http://www.sml.ee.upatras.gr/uploadedfiles/roundofferror.pdf
[30] Kireeva A., “Two-layer CA model for simulating catalytic reaction at dynamically varying temperature”, ACRI-2014, LNCS, 8751, 2014, 166–175
[31] Bandman O. L., Kireeva A. E., “Stochastic cellular automata simulation of oscillations and autowaves in reaction-diffusion systems.”, Numerical Analysis and Applications, 8:3 (2015), 208–222 | DOI | DOI | MR | Zbl
[32] Bandman O., “Cellular automata model of fluid permeation through porous material”, PaCT-2013, LNCS, 7979, 2013, 295–316
[33] Bandman O., “Parallel composition of asynchronous cellular automata simulating reaction diffusion processes”, ACRI-2010, LNCS, 6350, 2010, 395–398 | Zbl
[34] Vitvitsky A. A., “Cellular automata with dynamic structure to simulate the growth of biological tissues”, Numerical Analysis and Applications, 7:4 (2014), 263–273 | DOI | MR