Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2017_1_a4, author = {K. D. Zhukov}, title = {Overview of attacks on {AES-128:} to the $15^\text{th}$ anniversary {of~AES}}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {48--62}, publisher = {mathdoc}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2017_1_a4/} }
K. D. Zhukov. Overview of attacks on AES-128: to the $15^\text{th}$ anniversary of~AES. Prikladnaâ diskretnaâ matematika, no. 1 (2017), pp. 48-62. http://geodesic.mathdoc.fr/item/PDM_2017_1_a4/
[1] FIPS-197: Advanced Encryption Standard, , National Institute of Standards and Technology (NIST), 2001 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
[2] Bogdanov A., Khovratovich D., Rechberger C., “Biclique cryptanalysis of the full AES”, ASIACRYPT 2011, LNCS, 7073, 2011, 344–371 | MR | Zbl
[3] Gilbert H., Peyrin T., Super-sbox Cryptanalysis: Improved Attacks for AES-like Permutations, Cryptology ePrint Archive, Report 2009/531, 2009
[4] Grassi L., Rechberger C., Ronjom S., Subspace Trail Cryptanalysis and its Applications to AES, Cryptology ePrint Archive, Report 2016/592, 2016
[5] Daemen J., Rijmen V., The Design of Rijndael: AES – The Advanced Encryption Standard, Springer, Berlin, 2002, 238 pp. | MR | Zbl
[6] Dunkelman O., Keller N., “The effects of the omission of last round's mixcolumns on AES”, Inform. Proc. Let., 110:8–9 (2010), 304–308 | DOI | MR | Zbl
[7] Daemen J., Rijmen V., AES Proposal: Rijndael, , 1998 http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
[8] Bouillaguet C., Derbez P., Dunkelman O., et al., “Low-data complexity attacks on AES”, IEEE Trans. Inform. Theory, 58:11 (2012), 7002–7017 | DOI | MR
[9] Bulygin S., Brickenstein M., Obtaining and solving systems of equations in key variables only for the small variants of AES, Cryptology ePrint Archive, Report 2008/435, 2008
[10] Van Tilborg H., Encyclopedia of Cryptography and Security, Springer, Berlin, 2005, 684 pp. | Zbl
[11] Tunstall M., “Practical complexity differential cryptanalysis and fault analysis of AES”, J. Cryptographic Eng., 1:3 (2011), 219–230 | DOI
[12] Bogdanov A., Pyshkin A., Algebraic Side-Channel Collision Attacks on AES, Cryptology ePrint Archive, Report 2007/477, 2007
[13] Osvik D. A., Shamir A., Tromer E., Cache Attacks and Countermeasures: the Case of AES, Cryptology ePrint Archive, Report 2005/271, 2005 | MR
[14] Ali S. S., Mukhopadhyay D., Tunstall M., Differential Fault Analysis of AES: Towards Reaching its Limits, Cryptology ePrint Archive, Report 2012/446, 2012
[15] Biryukov A., Dunkelman O., Keller N., et al., Key Recovery Attacks of Practical Complexity on AES Variants with up to 10 Rounds, Cryptology ePrint Archive, Report 2009/374, 2009
[16] Biham E., Keller N., “Cryptanalysis of reduced variants of Rijndael”, Proc. 3rd AES Conf., N.Y., 1999, 11–15
[17] Knudsen L. R., “Truncated and higher order differentials”, LNCS, 1008, 1995, 196–211 | Zbl
[18] Lu J., Dunkelman O., Keller N., Kim J., New Impossible Differential Attacks on AES, Cryptology ePrint Archive, Report 2008/540, 2008 | MR
[19] Tiessen T., “Polytopic cryptanalysis”, Advances in Cryptology – EUROCRYPT 2016, Proc. 35th Ann. Intern. Conf., LNCS, 9665, Springer, N.Y., 2016, 214–239 | MR | Zbl
[20] Daemen J., Knudsen L., Rijmen V., “The block cipher square”, LNCS, 1267, 1997, 149–165
[21] Ferguson N., Kelsey J., Lucks S., et al., “Improved cryptanalysis of Rijndael”, LNCS, 1978, 2000, 213–230
[22] Tunstall M., Improved partial sums-based square attack on AES, Cryptology ePrint Archive, Report 2012/280, 2012
[23] Leander G., Abdelraheem M. A., AlKhzaimi H., Zenner E., “A cryptanalysis of PRINTcipher: The invariant subspace attack”, CRYPTO 2011, LNCS, 6841, 2011, 206–221 | MR | Zbl
[24] Canteaut A., Naya-Plasencia M., Vayssiere B., Sieve-in-the-Middle: Improved MITM Attacks (full version), Cryptology ePrint Archive, Report 2013/324, 2013
[25] Bouillaguet C., Derbez P., Dunkelman O., et al., Low Data Complexity Attacks on AES, Cryptology ePrint Archive, Report 2010/633, 2010
[26] Bogdanov A., Chang D., Ghosh M., Sanadhya S. K., Bicliques with Minimal Data and Time Complexity for AES (extended version), Cryptology ePrint Archive, Report 2014/932, 2014
[27] Li L., Jia K., Wang X., Improved Meet-in-the-Middle Attacks on AES-192 and PRINCE, Cryptology ePrint Archive, Report 2013/573, 2013
[28] Gilbert H., Minier M., “A collision attack on the 7-rounds Rijndael”, AES Candidate Conference, N.Y., 2000, 230–241
[29] Demirci H., Selcuk A., “A meet-in-the-middle attack on 8-round AES”, FSE 2008, LNCS, 5086, 2008, 116–126 | Zbl
[30] Demirci H., Taskn I., Coban M., Baysal A., “Improved meet-in-the-middle attacks on AES”, INDOCRYPT 2009, LNCS, 5922, 2009, 144–156 | Zbl
[31] Xiaoli D., Yupu H., Yongzhuang W., Jie C., “A new method for meet-in-the-middle attacks on reduced AES”, Wireless Communication Over Zigbee for Automotive Inclination Measurement. China Communications, 8:2 (2011), 21–25
[32] Wei Y., Lu J., Hu Y., Meet-in-the-Middle Attack on 8 Rounds of the AES Block Cipher under 192 Key Bits, Cryptology ePrint Archive, Report 2010/537, 2010
[33] Bouillaguet C., Derbez P., Fouque P.-A., Automatic Search of Attacks on Round-Reduced AES and Applications, Cryptology ePrint Archive, Report 2012/069, 2012
[34] Derbez P., Fouque P.-A., Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES, Cryptology ePrint Archive, Report 2015/259, 2015
[35] Biryukov A., Nikolić I., Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and others, Cryptology ePrint Archive, Report 2010/248, 2010 | MR
[36] Tunstall M., Practical Complexity Differential Cryptanalysis and Fault Analysis of AES, Cryptology ePrint Archive, Report 2011/453, 2011
[37] Cheon J. H., Kim M., Kim K., et al., “Improved impossible differential cryptanalysis of Rijndael and Crypton”, ICISC 2001, LCNS, 2288, 2002, 39–49 | MR | Zbl
[38] Zhang W., Wu W., Feng D., “New results on impossible differential cryptanalysis of reduced AES”, ICISC 2007, LCNS, 4817, 2007, 239–250 | MR | Zbl
[39] Alda F., Aragona R., Nicolodi L., Sala M., Implementation and Improvement of the Partial Sum Attack on 6-Round AES, Cryptology ePrint Archive, Report 2014/216, 2014
[40] Bahrak B., Aref M., “A novel impossible differential cryptanalysis of AES”, Western European Workshop on Research in Cryptology, Bochum, 2007, 152–156
[41] Bahrak B., Aref M., “Impossible differential attack on seven-round AES-128”, IET Inform. Sec., 2:2 (2008), 28–32 | DOI
[42] Yuan Z., New Impossible Differential Attacks on AES, Cryptology ePrint Archive, Report 2010/093, 2010
[43] Dunkelman O., Keller N., Shamir A., Improved Single-Key Attacks on 8-round AES, Cryptology ePrint Archive, Report 2010/322, 2010 | MR
[44] Mala H., Dakhilalian M., Rijmen V., Modarres-Hashemi M., “Improved impossible differential cryptanalysis of 7-round AES-128”, INDOCRYPT 2010, LNCS, 6498, 2010, 282–291 | Zbl
[45] Derbez P., Fouque P.-A., Jean J., Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key Setting, Cryptology ePrint Archive, Report 2012/477, 2012
[46] Liu Y., Gu D., Liu Z., et al., “New improved impossible differential attack on reduced-round AES-128”, Lecture Notes Electr. Eng., 114, 2012, 453–461 | DOI | MR
[47] Bogdanov A., Kavun E. B., Paar C., et al., “Better than brute-force optimized hardware architecture for efficient biclique attacks on AES-128”, SHARCS12 – Special-Purpose Hardware for Attacking Cryptographic Systems, Washington, 2012, 17–34
[48] Chang D., Ghosh M., Sanadhya S., Biclique Cryptanalysis of Full Round AES with Reduced Data Complexity, , IIIT Delhi, 2013 https://repository.iiitd.edu.in/jspui/handle/123456789/99