Estimator for the distribution of the numbers of runs in a~random sequence controlled by stationary Markov chain
Prikladnaâ diskretnaâ matematika, no. 1 (2017), pp. 14-28

Voir la notice de l'article provenant de la source Math-Net.Ru

The sequences of random characters from a finite set $\mathcal A$ with polynomial distributions controlled by a stationary finite-state Markov chain are considered. For numbers of character runs in them, the asymptotic properties of joint distributions are studied. We deduce an estimate for the total variation distance $\rho_{TV}$ between the distribution of a random vector $\varsigma_\mathcal A$ with components being numbers of runs in a controlled sequence of an enough length $T$ and accompanying multidimensional Poisson distribution $\mathrm{Pois}(\lambda_\mathcal A)$. The estimate is $\rho_{TV}\left(\mathcal L(\varsigma_\mathcal A),\mathrm{Pois}(\lambda_\mathcal A)\right)\leq\gamma\left(\gamma T(p^*)^{s_*}+1\right)$, where $\gamma^2=|\mathcal A|^2(2s^*+3)(p^*)^{s_*}$, $s_*$ ($s^*$) is the minimum (maximum) length of run in the set of components of the vector $\varsigma_\mathcal A$, and $p^*$ is the maximum character probability in distributions given on $\mathcal A$. For deriving this estimate, we use the functional variant of Chen–Stein method and an estimation for the total variation distance between the mixed and ordinal Poisson distributions. This estimation is a function of the variance of mixing parameter of mixed Poisson distribution. Using the derived estimate for the total variation distance $\rho_{TV}$, we deduce the multidimensional Poisson and normal limit theorems for the random vector $\varsigma_\mathcal A$ under appropriate conditions for scheme parameters.
Keywords: number of runs, Chen–Stein method, mixed Poisson distribution, normal limit theorem, hidden Markov model.
Mots-clés : Markov chain, total variation distance, Poisson limit theorem
@article{PDM_2017_1_a1,
     author = {N. M. Mezhennaya},
     title = {Estimator for the distribution of the numbers of runs in a~random sequence controlled by stationary {Markov} chain},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {14--28},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2017_1_a1/}
}
TY  - JOUR
AU  - N. M. Mezhennaya
TI  - Estimator for the distribution of the numbers of runs in a~random sequence controlled by stationary Markov chain
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2017
SP  - 14
EP  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2017_1_a1/
LA  - ru
ID  - PDM_2017_1_a1
ER  - 
%0 Journal Article
%A N. M. Mezhennaya
%T Estimator for the distribution of the numbers of runs in a~random sequence controlled by stationary Markov chain
%J Prikladnaâ diskretnaâ matematika
%D 2017
%P 14-28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2017_1_a1/
%G ru
%F PDM_2017_1_a1
N. M. Mezhennaya. Estimator for the distribution of the numbers of runs in a~random sequence controlled by stationary Markov chain. Prikladnaâ diskretnaâ matematika, no. 1 (2017), pp. 14-28. http://geodesic.mathdoc.fr/item/PDM_2017_1_a1/