Estimator for the distribution of the numbers of runs in a~random sequence controlled by stationary Markov chain
Prikladnaâ diskretnaâ matematika, no. 1 (2017), pp. 14-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sequences of random characters from a finite set $\mathcal A$ with polynomial distributions controlled by a stationary finite-state Markov chain are considered. For numbers of character runs in them, the asymptotic properties of joint distributions are studied. We deduce an estimate for the total variation distance $\rho_{TV}$ between the distribution of a random vector $\varsigma_\mathcal A$ with components being numbers of runs in a controlled sequence of an enough length $T$ and accompanying multidimensional Poisson distribution $\mathrm{Pois}(\lambda_\mathcal A)$. The estimate is $\rho_{TV}\left(\mathcal L(\varsigma_\mathcal A),\mathrm{Pois}(\lambda_\mathcal A)\right)\leq\gamma\left(\gamma T(p^*)^{s_*}+1\right)$, where $\gamma^2=|\mathcal A|^2(2s^*+3)(p^*)^{s_*}$, $s_*$ ($s^*$) is the minimum (maximum) length of run in the set of components of the vector $\varsigma_\mathcal A$, and $p^*$ is the maximum character probability in distributions given on $\mathcal A$. For deriving this estimate, we use the functional variant of Chen–Stein method and an estimation for the total variation distance between the mixed and ordinal Poisson distributions. This estimation is a function of the variance of mixing parameter of mixed Poisson distribution. Using the derived estimate for the total variation distance $\rho_{TV}$, we deduce the multidimensional Poisson and normal limit theorems for the random vector $\varsigma_\mathcal A$ under appropriate conditions for scheme parameters.
Keywords: number of runs, Chen–Stein method, mixed Poisson distribution, normal limit theorem, hidden Markov model.
Mots-clés : Markov chain, total variation distance, Poisson limit theorem
@article{PDM_2017_1_a1,
     author = {N. M. Mezhennaya},
     title = {Estimator for the distribution of the numbers of runs in a~random sequence controlled by stationary {Markov} chain},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {14--28},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2017_1_a1/}
}
TY  - JOUR
AU  - N. M. Mezhennaya
TI  - Estimator for the distribution of the numbers of runs in a~random sequence controlled by stationary Markov chain
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2017
SP  - 14
EP  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2017_1_a1/
LA  - ru
ID  - PDM_2017_1_a1
ER  - 
%0 Journal Article
%A N. M. Mezhennaya
%T Estimator for the distribution of the numbers of runs in a~random sequence controlled by stationary Markov chain
%J Prikladnaâ diskretnaâ matematika
%D 2017
%P 14-28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2017_1_a1/
%G ru
%F PDM_2017_1_a1
N. M. Mezhennaya. Estimator for the distribution of the numbers of runs in a~random sequence controlled by stationary Markov chain. Prikladnaâ diskretnaâ matematika, no. 1 (2017), pp. 14-28. http://geodesic.mathdoc.fr/item/PDM_2017_1_a1/

[1] Balakrishnan N., Koutras M. V., Runs and Scans with Applications, John Whiley Sons Inc., N.Y., 2002, 452 pp. | MR

[2] Mikhaylov V. G., “On asymptotic properties of the number of runs of events”, Tr. Diskr. Mat., 9, 2006, 152–163 (in Russian)

[3] Aki S., Hirano K., “Discrete distributions related to succession events in two-state Markov chain”, Statistical Science and Data Analysis, eds. K. Matusita, M. L. Puri, T. Hayakawa, VSP International Science Publishers, Zeist, 1993, 467–474 | MR | Zbl

[4] Aki S., Hirano K., “Sooner and later waiting time problems for runs in Markov dependent bivariate trials”, Ann. Inst. Stat. Math., 51 (1999), 17–29 | DOI | MR | Zbl

[5] Han Q., Aki S., “Formulae and recursions for the joint distributions of success runs of several lengths in a two-state Markov chain”, Stat. Probab. Lett., 40:3 (1998), 203–214 | DOI | MR | Zbl

[6] Savel'ev L. Ja., Balakin S. V., “The joint distribution of the number of ones and the number of 1-runs in binary Markov sequences”, Discr. Math. Appl., 14:4 (2004), 353–372 | DOI | DOI | MR | Zbl

[7] Savel'ev L. Ja., Balakin S. V., “A combinatorial approach to calculation of moments of characteristics of runs in ternary Markov sequences”, Discr. Math. Appl., 21:1 (2011), 47–67 | DOI | DOI | MR

[8] Savel'ev L. Ja., “Calculation of the number of states in binary Markov stochastic models”, Sib. Zh. Vychisl. Mat., 18:2 (2015), 191–200 (in Russian) | DOI | MR | Zbl

[9] Savel'ev L. Ja., Balakin S. V., “Some applications of the stochastic theory of runs”, Sib. Zh. Ind. Mat., 15:3 (2012), 111–123 (in Russian) | MR | Zbl

[10] Shinde R. L., Kotwal K. S., “On the joint distribution of runs in the sequence of Markov-dependent multi-state trials”, Stat. Probab. Lett., 76:10 (2006), 1065–1074 | DOI | MR | Zbl

[11] Geske M. X., Godbole A. P., Schaffner A. A., et al., “Compound Poisson approximations for word patterns under Markovian hypotheses”, J. Appl. Probab., 32 (1995), 877–892 | DOI | MR | Zbl

[12] Erhardsson T., “Compound Poisson approximation for Markov chains using Stein's method”, Ann. Probab., 27:1 (1999), 565–596 | DOI | MR | Zbl

[13] Chryssaphinou O., Vaggelatou E., “Compound Poisson approximation for multiple runs in a Markov chain”, Ann. Inst. Stat. Math., 54:2 (2002), 411–424 | DOI | MR | Zbl

[14] Fu J. C., Wang L., Lou W. Y. W., “On exact and large deviation approximation for the distribution of the longest run in a sequence of two-state Markov dependent trials”, J. Appl. Probab., 40:2 (2003), 346–360 | DOI | MR | Zbl

[15] Eryilmaz S., “Some results associated with the longest run statistic in a sequence of Markov dependent trials”, Appl. Math. Comput., 175:1 (2006), 119–130 | MR | Zbl

[16] Pinsky M. A., Karlin S., “The long run behavior of Markov chains”, An Introduction to Stochastic Modeling, Fourth Edition, eds. M. A. Pinsky, S. Karlin, Elsevier, Boston, 2011, 165–222 | DOI | MR

[17] Fu J. C., Johnson B. C., “Approximate probabilities for runs and patterns in i.i.d. and Markov-dependent multistate trials”, Adv. Appl. Probab. Appl. Probab. Trust., 41:1 (2009), 292–308 | DOI | MR | Zbl

[18] Mikhailov V. G., Shoitov A. M., “On repetitions of long tuples in a Markov chain”, Discr. Math. Appl., 25:5 (2015), 295–303 | DOI | DOI | MR

[19] Mikhailov V. G., “Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain”, Discr. Math. Appl., 26:2 (2016), 105–113 | DOI | DOI | MR | MR | Zbl

[20] Mytalas G. C., Zazanis M. A., “Central Limit Theorem approximations for the number of runs in Markov-dependent binary sequences”, J. Stat. Plan. Inference, 143:2 (2013), 321–333 | DOI | MR | Zbl

[21] Mahmoudzadeh E., Montazeri M. A., Zekri M., Sadri S., “Extended hidden Markov model for optimized segmentation of breast thermography images”, Infrared Phys. Technol., 72 (2015), 19–28 | DOI

[22] Yang W., Tao J., Ye Z., “Continuous sign language recognition using level building based on fast hidden Markov model”, Pattern Recognit. Lett., 78 (2016), 28–35 | DOI

[23] Elliott R. J., Aggoun L., Moore J. B., Hidden Markov Models, Applications of Mathematics (New York), 29, Springer, N.Y., 1995, 382 pp. | MR | Zbl

[24] Aston J. A. D., Martin D. E. K., “Distributions associated with general runs and patterns in hidden Markov models”, Ann. Appl. Stat., 1:2 (2007), 585–611 | DOI | MR | Zbl

[25] Mezhennaya N. M., “On the number of characters matchings in discrete random sequence controlled by Markov chain”, Sib. Elektron. Mat. Izv., 13 (2016), 305–317 (in Russian) | DOI | MR | Zbl

[26] Rozanov Yu. A., Random processes. Short course, Nauka Publ., Moscow, 1979, 184 pp. (in Russian) | MR

[27] Mezhennaya N. M., “On the distribution of the number of runs in polynomial sequence controlled by Markov chain”, OP Surv. Appl. Ind. Math., 23:2 (2016), 186–187

[28] Mezhennaya N. M., “On the limit distribution of a number of runs in polynomial sequence controlled by Markov chain”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:3 (2016), 324–335 (in Russian) | DOI | MR

[29] Barbour A. D., Holst L., Janson S., Poisson Approximation, Oxford Univ. Press, Oxford, 1992, 277 pp. | MR | Zbl