Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2016_4_a8, author = {K. K. Sabelfeld and A. E. Kireeva}, title = {Discrete stochastic simulation of the electrons and holes recombination in the $\mathrm{2D}$ and $\mathrm{3D}$ inhomogeneous semiconductor}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {110--127}, publisher = {mathdoc}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2016_4_a8/} }
TY - JOUR AU - K. K. Sabelfeld AU - A. E. Kireeva TI - Discrete stochastic simulation of the electrons and holes recombination in the $\mathrm{2D}$ and $\mathrm{3D}$ inhomogeneous semiconductor JO - Prikladnaâ diskretnaâ matematika PY - 2016 SP - 110 EP - 127 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2016_4_a8/ LA - ru ID - PDM_2016_4_a8 ER -
%0 Journal Article %A K. K. Sabelfeld %A A. E. Kireeva %T Discrete stochastic simulation of the electrons and holes recombination in the $\mathrm{2D}$ and $\mathrm{3D}$ inhomogeneous semiconductor %J Prikladnaâ diskretnaâ matematika %D 2016 %P 110-127 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2016_4_a8/ %G ru %F PDM_2016_4_a8
K. K. Sabelfeld; A. E. Kireeva. Discrete stochastic simulation of the electrons and holes recombination in the $\mathrm{2D}$ and $\mathrm{3D}$ inhomogeneous semiconductor. Prikladnaâ diskretnaâ matematika, no. 4 (2016), pp. 110-127. http://geodesic.mathdoc.fr/item/PDM_2016_4_a8/
[1] Gorgis A., Flissikowski T., Brandt O., et al., “Time-resolved photoluminescence spectroscopy of individual GaN nanowires”, Phys. Rev., B86 (2012), 041302(R) | DOI
[2] Brandt O., Ploog K. H., “Solid state lighting: the benefits of disorder”, Nat. Mater., 2006, no. 5, 769–770 | DOI
[3] Brosseau C.N., Perrin M., Silva C., “Carrier recombination dynamics in $In_{x}Ga_{1-x}N/GaN$ multiple quantum wells”, Phys. Rev., B82 (2010), 085305 | DOI
[4] Sabelfeld K. K., Brandt O., Kaganer V. M., “Stochastic model for the fluctuation-limited reaction-diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations”, J. Math. Chem., 53:2 (2015), 651–669 | DOI | MR | Zbl
[5] Kolodko A. A., Sabelfeld K. K., “Stochastic Lagrangian model for spatially inhomogeneous Smoluchowski equation governing coagulating and diffusing particles”, Monte Carlo Methods and Applications, 7:3–4 (2001), 223–228 | MR | Zbl
[6] Kolodko A., Sabelfeld K., Wagner W., “A stochastic method for solving Smoluchowski's coagulation equation”, Mathematics and Computers in Simulation, 49:1–2 (1999), 57–79 | DOI | MR | Zbl
[7] Sabelfeld K. K., Levykin A. I., Kireeva A. E., “Stochastic simulation of fluctuation-induced reaction-diffusion kinetics governed by Smoluchowski equations”, Monte Carlo Methods and Applications, 21:1 (2015), 33–48 | DOI | MR | Zbl
[8] Toffoli T., Margolus N., Cellular Automata Machines: A New Environment for Modeling, MIT Press, USA, 1987, 259 pp.
[9] Bandman O. L., “Cellular automata models of spatial dynamics”, Metody i Modeli Sovremennogo Programmirovaniya, Sistemnaya Informatika, 10, 2006, 59–113 (in Russian)
[10] Wolfram S., A New Kind of Science, Wolfram Media, 2002, 1197 pp. | MR | Zbl
[11] Ermakov S. M., Mikhaylov G. A., Statistical Modeling, Fizmatlit Publ., M., 1982, 296 pp. (in Russian) | MR
[12] Kireeva A. E., Sabelfeld K. K., “Cellular automata model of electrons and holes annihilation in an inhomogeneous semiconductor”, LNCS, 9251, 2015, 191–200