Discrete stochastic simulation of the electrons and holes recombination in the $\mathrm{2D}$ and $\mathrm{3D}$ inhomogeneous semiconductor
Prikladnaâ diskretnaâ matematika, no. 4 (2016), pp. 110-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stochastic models of electron-hole recombination in $\mathrm{2D}$ and $\mathrm{3D}$ inhomogeneous semiconductors based on a discrete cellular automata approach are presented in the paper. These models are derived from a Monte Carlo algorithm based on spatially inhomogeneous nonlinear Smoluchowski equations with the random initial distribution density used to simulate the annihilation of spatially separate electrons and holes in a disordered semiconductor characterized by the heterogeneous properties of the material. Recombination kinetics in different regimes such as a pure diffusion, diffusion in vicinity of tunneling and diffusion in the presence of recombination centers are investigated by a cellular automata simulation. Statistical characteristics of the recombination process (particle concentrations and the radiative intensity) obtained by the cellular automaton models are compared with the theoretically known asymptotics derived for a pure diffusion case. The results obtained for a two-dimensional domain correspond to the theoretical asymptotics, whereas in three-dimensional case, they differ from the exact asymptotics. It is found out by simulations that a spatial electron and hole separation (segregation) occurs under certain conditions on the diffusion and tunneling rates. The electron-hole spatial segregation in $\mathrm{2D}$ and $\mathrm{3D}$ semiconductors is analyzed by using the probability density of the electron-hole separation. In addition, the execution time of the codes implementing the cellular automaton model of the recombination in $\mathrm{2D}$ and $\mathrm{3D}$ semiconductors is studied in dependence on the number of simulated electron-hole pairs and the size of the semiconductor domain. It is shown that the execution time for semiconductors of dimension $d$ is proportional to a polynomial of order $d$.
Keywords: recombination, semiconductor, tunnelling, stochastic simulation, cellular automata.
Mots-clés : diffusion
@article{PDM_2016_4_a8,
     author = {K. K. Sabelfeld and A. E. Kireeva},
     title = {Discrete stochastic simulation of the electrons and holes recombination in the $\mathrm{2D}$ and $\mathrm{3D}$ inhomogeneous semiconductor},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {110--127},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_4_a8/}
}
TY  - JOUR
AU  - K. K. Sabelfeld
AU  - A. E. Kireeva
TI  - Discrete stochastic simulation of the electrons and holes recombination in the $\mathrm{2D}$ and $\mathrm{3D}$ inhomogeneous semiconductor
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 110
EP  - 127
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_4_a8/
LA  - ru
ID  - PDM_2016_4_a8
ER  - 
%0 Journal Article
%A K. K. Sabelfeld
%A A. E. Kireeva
%T Discrete stochastic simulation of the electrons and holes recombination in the $\mathrm{2D}$ and $\mathrm{3D}$ inhomogeneous semiconductor
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 110-127
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_4_a8/
%G ru
%F PDM_2016_4_a8
K. K. Sabelfeld; A. E. Kireeva. Discrete stochastic simulation of the electrons and holes recombination in the $\mathrm{2D}$ and $\mathrm{3D}$ inhomogeneous semiconductor. Prikladnaâ diskretnaâ matematika, no. 4 (2016), pp. 110-127. http://geodesic.mathdoc.fr/item/PDM_2016_4_a8/

[1] Gorgis A., Flissikowski T., Brandt O., et al., “Time-resolved photoluminescence spectroscopy of individual GaN nanowires”, Phys. Rev., B86 (2012), 041302(R) | DOI

[2] Brandt O., Ploog K. H., “Solid state lighting: the benefits of disorder”, Nat. Mater., 2006, no. 5, 769–770 | DOI

[3] Brosseau C.N., Perrin M., Silva C., “Carrier recombination dynamics in $In_{x}Ga_{1-x}N/GaN$ multiple quantum wells”, Phys. Rev., B82 (2010), 085305 | DOI

[4] Sabelfeld K. K., Brandt O., Kaganer V. M., “Stochastic model for the fluctuation-limited reaction-diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations”, J. Math. Chem., 53:2 (2015), 651–669 | DOI | MR | Zbl

[5] Kolodko A. A., Sabelfeld K. K., “Stochastic Lagrangian model for spatially inhomogeneous Smoluchowski equation governing coagulating and diffusing particles”, Monte Carlo Methods and Applications, 7:3–4 (2001), 223–228 | MR | Zbl

[6] Kolodko A., Sabelfeld K., Wagner W., “A stochastic method for solving Smoluchowski's coagulation equation”, Mathematics and Computers in Simulation, 49:1–2 (1999), 57–79 | DOI | MR | Zbl

[7] Sabelfeld K. K., Levykin A. I., Kireeva A. E., “Stochastic simulation of fluctuation-induced reaction-diffusion kinetics governed by Smoluchowski equations”, Monte Carlo Methods and Applications, 21:1 (2015), 33–48 | DOI | MR | Zbl

[8] Toffoli T., Margolus N., Cellular Automata Machines: A New Environment for Modeling, MIT Press, USA, 1987, 259 pp.

[9] Bandman O. L., “Cellular automata models of spatial dynamics”, Metody i Modeli Sovremennogo Programmirovaniya, Sistemnaya Informatika, 10, 2006, 59–113 (in Russian)

[10] Wolfram S., A New Kind of Science, Wolfram Media, 2002, 1197 pp. | MR | Zbl

[11] Ermakov S. M., Mikhaylov G. A., Statistical Modeling, Fizmatlit Publ., M., 1982, 296 pp. (in Russian) | MR

[12] Kireeva A. E., Sabelfeld K. K., “Cellular automata model of electrons and holes annihilation in an inhomogeneous semiconductor”, LNCS, 9251, 2015, 191–200