Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2016_4_a5, author = {A. V. Gavrikov}, title = {$\mathrm{T}$-irreducible extensions of directed starlike trees}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {74--80}, publisher = {mathdoc}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2016_4_a5/} }
A. V. Gavrikov. $\mathrm{T}$-irreducible extensions of directed starlike trees. Prikladnaâ diskretnaâ matematika, no. 4 (2016), pp. 74-80. http://geodesic.mathdoc.fr/item/PDM_2016_4_a5/
[1] Bogomolov A. M., Salii V. N., Algebraic Foundations of the Discrete Systems Theory, Nauka Publ., M., 1997 (in Russian) | MR
[2] Kurnosova S. G., “T-irreducible extension for some classes of graphs”, Teoreticheskie Problemy Informatiki i ee Prilozheniy, SGU Publ., Saratov, 2004, 113–125 (in Russian)
[3] Kurnosova S. G., “T-irreducible extension of complete binary trees”, J. TSU. Supplement, 2005, no. 14, 158–160 (in Russian)
[4] Gavrikov A. V., “T-irreducible extension of unions of some types orgraphs”, Prikladnaya Diskretnaya Matematika, 2013, no. 4(22), 47–56 (in Russian)
[5] Gavrikov A. V., “T-irreducible extension of polygonal digraphs”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 2, 18–23 (in Russian) | Zbl
[6] Salii V. N., “Zero-knowledge proofs in problems on extensions on graphs”, J. TSU. Supplement, 2003, no. 6, 63–65 (in Russian)
[7] Abrosimov M. B., “Some questions about the minimum extensions on graphs”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 6:1/2 (2006), 86–90 (in Russian)
[8] Hayes J. P., “A graph model for fault-tolerant computing systems”, IEEE Trans. Computers, S-26:9 (1976), 875–884 | DOI | MR
[9] Abrosimov M. B., “On the complexity of some problems related to graph extensions”, Mat. Zametki, 88:5 (2010), 643–650 (in Russian) | DOI | MR | Zbl