The ranks of planarity for~varieties~of~commutative~semigroups
Prikladnaâ diskretnaâ matematika, no. 4 (2016), pp. 50-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the concept of the planarity rank suggested by L. M. Martynov for semigroup varieties. Let $V$ be a variety of semigroups. If there is a natural number $r\geq 1$ that all $V$-free semigroups of ranks $\leq r$ allow planar Cayley graphs and the $V$-free semigroup of a rank $r+1$ doesn't allow planar Cayley graph, then this number $r$ is called the planarity rank for variety $V$. If such a number $r$ doesn't exist, then we say that the variety $V$ has the infinite planarity rank. We prove that a non-trivial variety of commutative semigroups either has the infinite planarity rank and coincides with the variety of semigroups with the zero multiplication or has a planarity rank $1$, $2$ or $3$. These estimates of planarity ranks for varieties of commutative semigroups are achievable.
Keywords: semigroup, Cayley graph of semigroup, variety of semigroups, free semigroup of variety, planarity rank for semigroup variety, commutative semigroup, variety of commutative semigroups, planarity rank for variety of commutative semigroups.
@article{PDM_2016_4_a3,
     author = {D. V. Solomatin},
     title = {The ranks of planarity for~varieties~of~commutative~semigroups},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {50--64},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_4_a3/}
}
TY  - JOUR
AU  - D. V. Solomatin
TI  - The ranks of planarity for~varieties~of~commutative~semigroups
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 50
EP  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_4_a3/
LA  - ru
ID  - PDM_2016_4_a3
ER  - 
%0 Journal Article
%A D. V. Solomatin
%T The ranks of planarity for~varieties~of~commutative~semigroups
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 50-64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_4_a3/
%G ru
%F PDM_2016_4_a3
D. V. Solomatin. The ranks of planarity for~varieties~of~commutative~semigroups. Prikladnaâ diskretnaâ matematika, no. 4 (2016), pp. 50-64. http://geodesic.mathdoc.fr/item/PDM_2016_4_a3/