The ranks of planarity for~varieties~of~commutative~semigroups
Prikladnaâ diskretnaâ matematika, no. 4 (2016), pp. 50-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the concept of the planarity rank suggested by L. M. Martynov for semigroup varieties. Let $V$ be a variety of semigroups. If there is a natural number $r\geq 1$ that all $V$-free semigroups of ranks $\leq r$ allow planar Cayley graphs and the $V$-free semigroup of a rank $r+1$ doesn't allow planar Cayley graph, then this number $r$ is called the planarity rank for variety $V$. If such a number $r$ doesn't exist, then we say that the variety $V$ has the infinite planarity rank. We prove that a non-trivial variety of commutative semigroups either has the infinite planarity rank and coincides with the variety of semigroups with the zero multiplication or has a planarity rank $1$, $2$ or $3$. These estimates of planarity ranks for varieties of commutative semigroups are achievable.
Keywords: semigroup, Cayley graph of semigroup, variety of semigroups, free semigroup of variety, planarity rank for semigroup variety, commutative semigroup, variety of commutative semigroups, planarity rank for variety of commutative semigroups.
@article{PDM_2016_4_a3,
     author = {D. V. Solomatin},
     title = {The ranks of planarity for~varieties~of~commutative~semigroups},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {50--64},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_4_a3/}
}
TY  - JOUR
AU  - D. V. Solomatin
TI  - The ranks of planarity for~varieties~of~commutative~semigroups
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 50
EP  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_4_a3/
LA  - ru
ID  - PDM_2016_4_a3
ER  - 
%0 Journal Article
%A D. V. Solomatin
%T The ranks of planarity for~varieties~of~commutative~semigroups
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 50-64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_4_a3/
%G ru
%F PDM_2016_4_a3
D. V. Solomatin. The ranks of planarity for~varieties~of~commutative~semigroups. Prikladnaâ diskretnaâ matematika, no. 4 (2016), pp. 50-64. http://geodesic.mathdoc.fr/item/PDM_2016_4_a3/

[1] Solomatin D. V., “Semigroups with outerplanar Cayley graphs”, Sib. Electr. Math. Reports, 8 (2011), 191–212 (in Russian) | MR

[2] Solomatin D. V., “Free partially commutative nilpotent semigroups with planar Cayley graphs”, Herald of Omsk University, 2014, no. 4, 28–36 (in Russian)

[3] Solomatin D. V., “Direct products of cyclic semigroups admitting a planar Caley graph”, Sib. Electr. Math. Reports, 3 (2006), 238–252 (in Russian) | MR | Zbl

[4] Solomatin D. V., Commutative Semigroups with Planar Cayley Graphs, PhD Thesis, OmSPU Publ., Omsk, 2006 (in Russian)

[5] Knauer K., Knauer U., “Toroidal embeddings of right groups”, Thai J. Math., 8:3 (2010), 483–490 | MR | Zbl

[6] Knauer K., Knauer U., “On planar right groups”, Semigroup Forum, 92:1 (2015), 142–157 | DOI | MR

[7] Maschke H., “The representation of finite groups, especially of the rotation groups of the regular bodies of three- and four-dimensional space, by Cayley's color diagrams”, Amer. J. Math., 18:2 (1896), 156–194 | DOI | MR | Zbl

[8] Belenkova Zh. T., Roman'kov V. A., Regular Cayley Graphs, Dep. VINITI, No 802-V97, 1997 (in Russian)

[9] Belenkova Zh. T., Plane Cayley Graphs, PhD Thesis, OmSU Publ., Omsk, 1998 (in Russian)

[10] Georgakopoulos A., Hamann M., The Planar Cayley Graphs are Effectively Enumerable, 2015, arXiv: 1506.03361 [math.CO]

[11] Zhang X., “Clifford semigroups with genus zero”, Proc. Intern. Conf. Semigroups, Acts and Categories with Applications to Graphs (University of Tartu, June 27–30, 2007), Estonian Mathematical Society, Tartu, 2008, 151–160 | MR | Zbl

[12] Ol'shanskiy A. Yu., Geometry of Defining Relations in Groups, Nauka Publ., M., 1989 (in Russian) | MR

[13] Martynov P. O., Solomatin D. V., “Finite free commutative semigroups and semigroups with zero how admitting generalized outerplanar Cayley graphs”, Herald of Omsk University, 2014, no. 3, 22–26 (in Russian)

[14] Martynov P. O., “Finite free commutative monoids admits generalized outerplanar Cayley graphs”, Herald of Omsk University, 2015, no. 4, 6–9 (in Russian)

[15] Korobeynikov A. G., Kutuzov I. M., “Obfuscation algorithm”, Cybernetics and Programming, 2013, no. 3, 1–8 (in Russian)

[16] New Problems of Algebra and Logic, Omsk, 2015 (in Russian) http://www.mathnet.ru/php/seminars.phtml?presentid=12900

[17] Solomatin D. V., “Planarity ranks of the varieties of commutative monoids”, Herald of Omsk University, 2012, no. 4, 41–45 (in Russian)

[18] Solomatin D. V., “Planar varieties of commutative semigroups”, Herald of Omsk University, 2015, no. 2, 17–22 (in Russian)

[19] Solomatin D. V., “Planar varieties of semigroups”, Sib. Electr. Math. Reports, 12 (2015), 232–247 (in Russian) | Zbl

[20] Kisielewicz A., “Varieties of commutative semigroups”, Trans. Amer. Math. Soc., 342:1 (1994), 275–306 | DOI | MR | Zbl

[21] Head T. J., “The varieties of commutative monoids”, Nieuw Archief voor Wiskunde, 16:3 (1968), 203–206 | MR | Zbl

[22] Perkins P., “Bases for equational theories of semigroups”, J. Algebra, 11:2 (1969), 298–314 | DOI | MR | Zbl

[23] Shevrin L. N., Vernikov B. M., Volkov M. V., “Lattices of semigroup varieties”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 3, 3–36 (in Russian) | MR | Zbl

[24] Cohn P. M., Universal Algebra, Harper Row, 1965 | MR | MR | Zbl

[25] Emelichev V. A., Mel'nikov O. I., Saravanov V. I., Tyshkevich R. I., Lectures on Graph Theory, Nauka Publ., M., 1990 (in Russian) | MR

[26] Shevrin L. N., “Semigroups”, Algebra, Ch. IV, v. 2, ed. L. A. Skornyakov, Nauka Publ., M., 1991, 11–191 (in Russian)

[27] Shevrin L. N., Martynov L. M., “On accessible classes of algebras”, Sib. Math. J., 12:6 (1971), 1363–1381 (in Russian) | MR | Zbl

[28] Solomatin D. V., “Finite free commutative semigroups with planar Cayley graphs”, Mezhvuzovskiy sbornik nauchnykh trudov, Matematika i Informatika: Nauka i Obrazovanie, 3, OmSPU Publ., Omsk, 2003, 32–38 (in Russian)

[29] Solomatin D. V., “Finite free commutative monoids admitting planar graph Cayley”, Herald of Omsk University, 2005, no. 4, 36–38 (in Russian)

[30] Solomatin D. V., “The direct product of cyclic monoids and semigroups with zero admitting planar Cayley graph”, Mezhvuzovskiy sbornik nauchnykh trudov, Matematika i Informatika: Nauka i Obrazovanie, 5, OmSPU Publ., Omsk, 51–63 (in Russian)

[31] Solomatin D. V., “Free partially commutative semigroups and $n$-fan semilattice with planar Cayley graphs”, Mezhvuzovskiy sbornik nauchnykh trudov, Matematika i Informatika: Nauka i Obrazovanie, 8, OmSPU Publ., Omsk, 2009, 36–39 (in Russian)

[32] Martynov L. M., Solomatin D. V., “Semigroups of residues with cyclic groups of invertible elements admitting planar Cayley graphs”, Herald of Omsk University, 2012, no. 2, 57–62 (in Russian)

[33] Solomatin D. V., “The ranks of planarity for varieties of commutative semigroups”, Proc. Intern. conf. on Algebra, Analysis and Geometry, Kazan University Publ., Kazan, 2016, 318–319 (in Russian)