Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2016_4_a2, author = {A. V. Pokrovskiy}, title = {A lower bound for the distance between a bijunctive function and a function with the fixed algebraic immunity}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {38--49}, publisher = {mathdoc}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2016_4_a2/} }
TY - JOUR AU - A. V. Pokrovskiy TI - A lower bound for the distance between a bijunctive function and a function with the fixed algebraic immunity JO - Prikladnaâ diskretnaâ matematika PY - 2016 SP - 38 EP - 49 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2016_4_a2/ LA - ru ID - PDM_2016_4_a2 ER -
A. V. Pokrovskiy. A lower bound for the distance between a bijunctive function and a function with the fixed algebraic immunity. Prikladnaâ diskretnaâ matematika, no. 4 (2016), pp. 38-49. http://geodesic.mathdoc.fr/item/PDM_2016_4_a2/
[1] Gorshkov S. P., “Application of the NP-complete Problems Theory for Estimating the Complexity of Solving Systems of Boolean Equations”, Obozrenie Prikladnoy i Promyshlennoy Matematiki, Ser. Diskr. Mat., 2:3 (1995), 325–398 (in Russian) | MR
[2] Tarasov A. V., “On the properties of functions representable in the form of a 2-CNF”, Diskr. Mat., 13:4 (2001), 99–115 (in Russian) | DOI | MR | Zbl
[3] Lobanov M. S., On the Relations between the Nonlinearity and Algebraic Immunity of Boolean Functions, PhD Thesis, MSU Publ., M., 2009 (in Russian)
[4] Meier W., Pasalic E., and Carlet C., “Algebraic attacks and decomposition of Boolean functions”, EUROCRYPT'04, LCNS, 3027, 2004, 474–491 | MR | Zbl
[5] Dalai D. K., On Some Necessary Conditions of Boolean Functions to Resist Algebraic Attacks, PhD Thesis, Kolkata, 2006, 139 pp.
[6] Buryakov M. L., Algebraic, Combinatorial, and Cryptographic Properties of Parameters of Boolean functions Affine Restrictions, PhD Thesis, MSU Publ., M., 2008 (in Russian)