Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2016_3_a7, author = {A. N. Rybalov}, title = {On generic complexity of the discrete logarithm problem}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {93--97}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2016_3_a7/} }
A. N. Rybalov. On generic complexity of the discrete logarithm problem. Prikladnaâ diskretnaâ matematika, no. 3 (2016), pp. 93-97. http://geodesic.mathdoc.fr/item/PDM_2016_3_a7/
[1] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[2] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Average-case complexity for the word and membership problems in group theory”, Adv. Math., 190 (2005), 343–359 | DOI | MR | Zbl
[3] Hamkins J. D., Miasnikov A. G., “The halting problem is decidable on a set of asymptotic probability one”, Notre Dame J. Formal Logic, 47:4 (2006), 515–524 | DOI | MR | Zbl
[4] Gilman R., Miasnikov A. G., Myasnikov A. D., Ushakov A., “Report on generic case complexity”, Herald of Omsk University, 2007, Special Issue, 103–110
[5] Mao W., Modern Cryptography: Theory and Practice, Prentice Hall PTR, 2003
[6] Impagliazzo R., Wigderson A., “$\mathrm{P=BPP}$ unless $E$ has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR
[7] Myasnikov A., Rybalov A., “Generic complexity of undecidable problems”, J. Symbolic Logic, 73:2 (2008), 656–673 | DOI | MR | Zbl
[8] Rybalov A., “Generic complexity of presburger arithmetic”, Theory Comput. Systems, 46:1 (2010), 2–8 | DOI | MR | Zbl