On generic complexity of the discrete logarithm problem
Prikladnaâ diskretnaâ matematika, no. 3 (2016), pp. 93-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generic-case approach to algorithmic problems was suggested by Miasnikov, Kapovich, Schupp and Shpilrain in 2003. This approach studies behaviour of an algorithm on typical (almost all) inputs and ignores the rest of inputs. Many classical undecidable or hard algorithmic problems become feasible in the generic case. But there are generically hard problems. In this paper, we consider generic complexity of the classical discrete logarithm problem. We fit this problem in the frameworks of generic complexity and prove that its natural subproblem is generically hard provided that the discrete logarithm problem is hard in the worst case.
Keywords: generic complexity, discrete logarithm problem, probabilistic algorithm.
@article{PDM_2016_3_a7,
     author = {A. N. Rybalov},
     title = {On generic complexity of the discrete logarithm problem},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {93--97},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_3_a7/}
}
TY  - JOUR
AU  - A. N. Rybalov
TI  - On generic complexity of the discrete logarithm problem
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 93
EP  - 97
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_3_a7/
LA  - ru
ID  - PDM_2016_3_a7
ER  - 
%0 Journal Article
%A A. N. Rybalov
%T On generic complexity of the discrete logarithm problem
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 93-97
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_3_a7/
%G ru
%F PDM_2016_3_a7
A. N. Rybalov. On generic complexity of the discrete logarithm problem. Prikladnaâ diskretnaâ matematika, no. 3 (2016), pp. 93-97. http://geodesic.mathdoc.fr/item/PDM_2016_3_a7/

[1] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl

[2] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Average-case complexity for the word and membership problems in group theory”, Adv. Math., 190 (2005), 343–359 | DOI | MR | Zbl

[3] Hamkins J. D., Miasnikov A. G., “The halting problem is decidable on a set of asymptotic probability one”, Notre Dame J. Formal Logic, 47:4 (2006), 515–524 | DOI | MR | Zbl

[4] Gilman R., Miasnikov A. G., Myasnikov A. D., Ushakov A., “Report on generic case complexity”, Herald of Omsk University, 2007, Special Issue, 103–110

[5] Mao W., Modern Cryptography: Theory and Practice, Prentice Hall PTR, 2003

[6] Impagliazzo R., Wigderson A., “$\mathrm{P=BPP}$ unless $E$ has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR

[7] Myasnikov A., Rybalov A., “Generic complexity of undecidable problems”, J. Symbolic Logic, 73:2 (2008), 656–673 | DOI | MR | Zbl

[8] Rybalov A., “Generic complexity of presburger arithmetic”, Theory Comput. Systems, 46:1 (2010), 2–8 | DOI | MR | Zbl