Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2016_3_a5, author = {V. M. Fomichev}, title = {The new universal estimation for exponents of graphs}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {78--84}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2016_3_a5/} }
V. M. Fomichev. The new universal estimation for exponents of graphs. Prikladnaâ diskretnaâ matematika, no. 3 (2016), pp. 78-84. http://geodesic.mathdoc.fr/item/PDM_2016_3_a5/
[1] Wielandt H., “Unzerlegbare nicht negative Matrizen”, Math. Zeitschr., 52 (1950), 642–648 | DOI | MR | Zbl
[2] Sachkov V. N., Tarakanov V. E., Combinatorics of Non-Negative Matrices, TVP Publ., Moscow, 2000 (in Russian) | MR
[3] Fomichev V. M., “The estimates of exponents for primitive graphs”, Prikladnaya Diskretnaya Matematika, 2011, no. 2(12), 101–112 (in Russian)
[4] Kogos K. G., Fomichev V. M., “Positive properties of non-negative matrices”, Prikladnaya Diskretnaya Matematika, 2012, no. 4(18), 5–13 (in Russian)
[5] Fomichev V. M., “Primitive sets of numbers being equivalent by Frobenius”, Prikladnaya Diskretnaya Matematika, 2014, no. 1(23), 20–26 (in Russian)
[6] Kyazhin S. N., Fomichev V. M., “About primitive systems of natural numbers”, Prikladnaya Diskretnaya Matematika, 2012, no. 2(16), 5–14 (in Russian)
[7] Rosser B., “The $n$-th prime is greater than $n\log n$”, Proc. London Math. Soc., 45 (1939), 21–44 | DOI | MR
[8] Alfonsin J. R., The Diophantine Frobenius Problem, Oxford University Press, 2005 | MR | Zbl
[9] Fomichev V. M., “Estimates for exponent of some graphs by Frobenius's numbers of three arguments”, Prikladnaya Diskretnaya Matematika, 2014, no. 2(24), 88–96 (in Russian)