Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2016_3_a3, author = {D. A. Soshin}, title = {The implementation of {Magma} and $2${-GOST} block cipher substitutions by algebraic threshold functions}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {53--66}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2016_3_a3/} }
TY - JOUR AU - D. A. Soshin TI - The implementation of Magma and $2$-GOST block cipher substitutions by algebraic threshold functions JO - Prikladnaâ diskretnaâ matematika PY - 2016 SP - 53 EP - 66 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2016_3_a3/ LA - ru ID - PDM_2016_3_a3 ER -
D. A. Soshin. The implementation of Magma and $2$-GOST block cipher substitutions by algebraic threshold functions. Prikladnaâ diskretnaâ matematika, no. 3 (2016), pp. 53-66. http://geodesic.mathdoc.fr/item/PDM_2016_3_a3/
[1] Dertouzos M., Threshold Logic, Mir Publ., Moscow, 1967 (in Russian)
[2] Moraga K., “Multiple-valued threshold logic”, Opticheskie Vychisleniya, Mir Publ., Moscow, 1993, 162–182 (in Russian)
[3] Nikonov V. G., Sidorov E. S., “About the possibility of one-to-one mappings representation by the quasi-hadamard matrixes”, Vestnik Moskovskogo Gosudarstvennogo Universiteta Lesa – Lesnoy Vestnik, 2009, no. 2(65), 155–157 (in Russian)
[4] Nikonov V. G., Soshin D. A., “The geometric method for constructing a balanced $k$-valued threshold functions and construction of substitutions based on them”, Obrazovatel'nye Resursy i Tekhnologii, 2014, no. 2(5), 76–80 (in Russian)
[5] Soshin D. A., “Constructing substitutions on the basis of threshold functions of multivalued logic”, Prikladnaya Diskretnaya Matematika, 2016, no. 2(32), 20–32 (in Russian)
[6] Information technology. Cryptographic protection of information. Block ciphers, GOST R 34.12-2015, Standartinform Publ., Moscow, 2015 (in Russian)
[7] Dmukh A. A., Dygin D. M., Marshalko G. B., “A lightweight-friendly modification of GOST block cipher”, Mat. Vopr. Kriptogr., 5:2 (2014), 47–55
[8] Soshin D. A., “The constructive method for synthesis of balanced $k$-valued algebraic threshold functions”, Comp. Nanotechnol., 2015, no. 4, pp, 31–36 (in Russian)
[9] Soshin D. A., “Representation of geometric types of Boolean functions in three variables by algebraic threshold functions”, Prikladnaya Diskretnaya Matematika, 2016, no. 1(31), 32–45 (in Russian)
[10] Nikonov V. G., “The classification of minimal basic representations of Boolean functions of four variables”, Obozrenie Prikladnoy i Promyshlennoy Matematiki. Ser. Diskretnaya Matematika, 1:3 (1994), 458–545 (in Russian) | Zbl
[11] Zuev Yu. A., “Combinatorial-probability and geometric methods in threshold logic”, Diskr. Mat., 3:2 (1991), 47–57 (in Russian) | MR | Zbl
[12] Irmatov A. A., “Estimates for the number of threshold functions”, Diskr. Mat., 8:4 (1996), 92–107 (in Russian) | DOI | MR | Zbl
[13] Irmatov A. A., Koviyanich Zh. D., “On the asymptotics of the logarithm of the number of threshold functions of $K$-valued logic”, Diskr. Mat., 10:3 (1998), 35–56 | DOI | MR | Zbl
[14] Winder R. O., “Show parametrs in threshold logic”, J. Association for Computing Machinery, 18:2 (1971), 265–289 | DOI | MR | Zbl