On the number of Sperner vertices in a~tree
Prikladnaâ diskretnaâ matematika, no. 2 (2016), pp. 115-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

A vertex $v$ of a tree $T$ is called a Sperner vertex if the in-tree $T(v)$ obtained from $T$ by orientation of all edges towards $v$ has the Sperner property, i.e. there exists a largest subset $A$ of mutually unreachable vertices in it such that all vertices in $A$ are equidistant to $v$. Some explicit methods to count the number of Sperner vertices in certain special trees are presented.
Keywords: graph, path, star, palm-tree, rank, caterpillar, train of palm-trees.
Mots-clés : Sperner vertex
@article{PDM_2016_2_a7,
     author = {V. N. Salii},
     title = {On the number of {Sperner} vertices in a~tree},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {115--118},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_2_a7/}
}
TY  - JOUR
AU  - V. N. Salii
TI  - On the number of Sperner vertices in a~tree
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 115
EP  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_2_a7/
LA  - ru
ID  - PDM_2016_2_a7
ER  - 
%0 Journal Article
%A V. N. Salii
%T On the number of Sperner vertices in a~tree
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 115-118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_2_a7/
%G ru
%F PDM_2016_2_a7
V. N. Salii. On the number of Sperner vertices in a~tree. Prikladnaâ diskretnaâ matematika, no. 2 (2016), pp. 115-118. http://geodesic.mathdoc.fr/item/PDM_2016_2_a7/

[1] Sperner E., “Ein Satz uber Untermengen einer endlichen Menge”, Math. Zeitschrift., 27:1 (1928), 544–548 | DOI | MR | Zbl

[2] Saliy V. N., “The Sperner property for polygonal graphs”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 135–137 (in Russian)

[3] Saliy V. N., “The Sperner property for trees”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 124–127 (in Russian)