Enhancing steganalysis accuracy via tentative filtering of stego-containers
Prikladnaâ diskretnaâ matematika, no. 2 (2016), pp. 87-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new approach to steganalysis called “the tentative filtering” and consisting in inserting an additional filtering phase before the final classification in order to select those containers where stego-information can be reliably detected. The size of this “good” subset of containers can be considered as an additional characteristic of the detector. We introduce three methods for implementing the tentative filtering: the naive method, the simple classification, and the combined classification. The experiments demonstrate that it is possible to select about 35 % of BOSSbase v1.01 images, for which HUGO 0.4 bpp is detected with the error less than 0.003, while the error over the whole set is 0.141. It is also demonstrated that it is possible to select about 5 % images, for which HUGO 0.1 bpp is detected with the error less than 0.05, while the whole set gives the error 0.37 (which is not quite a reliable detection).
Keywords: steganalysis, detection error, image features, SRM, adaptive steganography
Mots-clés : HUGO, ensemble classifier.
@article{PDM_2016_2_a5,
     author = {V. A. Monarev and A. I. Pestunov},
     title = {Enhancing steganalysis accuracy via tentative filtering of stego-containers},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {87--99},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_2_a5/}
}
TY  - JOUR
AU  - V. A. Monarev
AU  - A. I. Pestunov
TI  - Enhancing steganalysis accuracy via tentative filtering of stego-containers
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 87
EP  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_2_a5/
LA  - ru
ID  - PDM_2016_2_a5
ER  - 
%0 Journal Article
%A V. A. Monarev
%A A. I. Pestunov
%T Enhancing steganalysis accuracy via tentative filtering of stego-containers
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 87-99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_2_a5/
%G ru
%F PDM_2016_2_a5
V. A. Monarev; A. I. Pestunov. Enhancing steganalysis accuracy via tentative filtering of stego-containers. Prikladnaâ diskretnaâ matematika, no. 2 (2016), pp. 87-99. http://geodesic.mathdoc.fr/item/PDM_2016_2_a5/

[1] Fridrich J., “Rich models for steganalysis of digital images”, IEEE Trans. Information Forensics and Security, 7:3 (2012), 868–882 | DOI

[2] Fridrich J., Kodovsky J., Holub V., Goljan M., “Steganalysis of content-adaptive steganography in spatial domain”, Proc. 13th Information Hiding Workshop, LNCS, 6958, 2011, 102–117

[3] Ker A., Bas P., Bohme R., et al., “Moving steganography and steganalysis from the laboratory into the real world”, Proc. 1st ACM Workshop on Information Hiding and Multimedia Security, N.Y., USA, 2013, 45–58 | DOI

[4] Kodovsky J., Fridrich J., Holub V., “Ensemble classifiers for steganalysis of digital media”, IEEE Trans. Information Forensics and Security, 7:2 (2011), 434–444

[5] Monarev V., Pestunov A., “A known-key scenario for steganalysis and a highly accurate detector within it”, Proc. 10th IEEE Intern. Conf. Intelligent Information Hiding and Multimedia Signal Processing, Kitakyushu, 2014, 175–178

[6] Break our steganographic system, , 2015 http://www.agents.cz/boss

[7] Bas P., Filler T., Pevny T., “Break our steganographic system – the ins and outs of organizing BOSS”, Proc. 13th Information Hiding Workshop, LNCS, 6958, 2011, 59–70

[8] Break our watermarking system, second edition, , 2015 http://bows2.ec-lille.fr

[9] NRCS photo gallery, , 2015 http://photogallery.nrcs.usda.gov/res/sites/photogallery

[10] Pevny T., Bas P., Fridrich J., “Steganalysis by subtractive pixel adjacency matrix”, IEEE Trans. Information Forensics and Security, 5:2 (2010), 215–224 | DOI

[11] Biryukov A., Nakahara J., Preneel B., Vanderwalle J., “New weak-key classes of IDEA”, LNCS, 2513, 2002, 315–326 | Zbl

[12] Kara O., Manap C., “A new class of weak keys for Blowfish”, FSE'2007, LNCS, 4593, 2007, 167–180 | Zbl

[13] Pevny T., “Detecting messages of unknown length”, Proc. 8th Intern. Conf. Media Watermarking, Security and Forensics, 2011, 1–12

[14] Monarev V., Pestunov A., “A new compression-based method for estimating LSB replacement rate in color and grayscale images”, Proc. 7th IEEE Intern. Conf. Intelligent Information Hiding and Multimedia Signal Processing, Dalian, 2011, 57–60

[15] Fridrich J., Kodovsky J., Holub V., Goljan M., “Breaking HUGO – the process discovery”, Proc. 13th Information Hiding Workshop, LNCS, 6958, 2011, 102–117

[16] Holub V., Fridrich J., “Random projections of residuals for digital image steganalysis”, IEEE Trans. Information Forensics and Security, 8:12 (2013), 1996–2006 | DOI

[17] Feature extractors for steganalysis, , 2015 http://dde.binghamton.edu/download/feature_extractors

[18] Duda R., Hart P., Stork D., Pattern Classification, 2nd ed., John Wiley Sons Inc., N.Y., 2001 | MR

[19] Pevny T., Filler T., Bas P., “Using high-dimensional image models to perform highly undetectable steganography”, Proc. 12th Information Hiding Workshop, LNCS, 6387, 2010, 161–177

[20] Holub V., Fridrich J., “Designing steganographic distortion using directional filters”, Proc. 4th IEEE Intern. Workshop on Information Forensics and Security, Tenerife, 2012, 234–239

[21] Holub V., Fridrich J., “Digital image steganography using universal distortion”, Proc. 1th ACM Workshop on Information Hiding and Multimedia Security, N.Y., USA, 2013, 59–68 | DOI