On bounds for balanced embedding degree
Prikladnaâ diskretnaâ matematika, no. 2 (2016), pp. 63-86

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalized formula for calculating bounds for the balanced value of the hyperelliptic curve embedding degree is proved. Using this formula we give bounds for curves of genus 1–3 over finite fields with the small, medium and big characteristic. We also compute possible range of security level for curves with known generation methods, minimal $\rho$-value and embedding degrees $k=1,2,\dots,10$.
Keywords: hyperelliptic curve cryptography, pairings, embedding degree, discrete logarithm problem.
@article{PDM_2016_2_a4,
     author = {S. A. Novoselov},
     title = {On bounds for balanced embedding degree},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {63--86},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_2_a4/}
}
TY  - JOUR
AU  - S. A. Novoselov
TI  - On bounds for balanced embedding degree
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 63
EP  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_2_a4/
LA  - ru
ID  - PDM_2016_2_a4
ER  - 
%0 Journal Article
%A S. A. Novoselov
%T On bounds for balanced embedding degree
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 63-86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_2_a4/
%G ru
%F PDM_2016_2_a4
S. A. Novoselov. On bounds for balanced embedding degree. Prikladnaâ diskretnaâ matematika, no. 2 (2016), pp. 63-86. http://geodesic.mathdoc.fr/item/PDM_2016_2_a4/