Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2016_2_a0, author = {N. A. Lukyanova and D. V. Semenova}, title = {Associative {Frank} functions in constructing families of discrete probability distributions of random sets of events}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {5--19}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2016_2_a0/} }
TY - JOUR AU - N. A. Lukyanova AU - D. V. Semenova TI - Associative Frank functions in constructing families of discrete probability distributions of random sets of events JO - Prikladnaâ diskretnaâ matematika PY - 2016 SP - 5 EP - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2016_2_a0/ LA - ru ID - PDM_2016_2_a0 ER -
%0 Journal Article %A N. A. Lukyanova %A D. V. Semenova %T Associative Frank functions in constructing families of discrete probability distributions of random sets of events %J Prikladnaâ diskretnaâ matematika %D 2016 %P 5-19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2016_2_a0/ %G ru %F PDM_2016_2_a0
N. A. Lukyanova; D. V. Semenova. Associative Frank functions in constructing families of discrete probability distributions of random sets of events. Prikladnaâ diskretnaâ matematika, no. 2 (2016), pp. 5-19. http://geodesic.mathdoc.fr/item/PDM_2016_2_a0/
[1] Nguyen H. T., An Introduction to Random Sets, Chapman and Hall/CRC, 2006, 240 pp. | MR | Zbl
[2] Molchanov I., The Theory of Random Sets, Springer, N.Y., 2011, 488 pp. | MR
[3] Semenova D. V., Lukyanova N. A., “Recurrent formation of discrete probabilistic distributions of random sets of events”, Prikladnaya Diskretnaya Matematika, 2014, no. 4, 47–58 (in Russian)
[4] Lukyanova N. A., Semenova D. V., “The study of discrete probabilistic distributions of random sets of events using associative function”, J. SFU, Mathematics and Physics, 7:4 (2014), 500–514
[5] Semenova D. V., Lukyanova N. A., “Formation of probabilistic distributions of RSE by associative functions”, ITMM 2014, CCIS, 487, Springer International Publishing Switzerland, 2014, 377–386 | Zbl
[6] Alsina S., Frank M., Schveizer B., Associative Functions: Triangular Norms and Copulas, World Scientific Publishing Co. Pte. Ltd., Singapore, 2006, 237 pp. | MR | Zbl
[7] Frank M. J., “On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$”, Aequationes Math., 19 (1979), 194–226 | DOI | MR | Zbl
[8] Vorob'ev O. Yu., Vorob'ev A. O., “Summation of set-additive functions and Möbius inversion formula”, Doklady Akademii Nauk, 336:4 (2009), 417–420 (in Russian) | MR
[9] Vorob'ev O. Yu., Set-summation, Nauka Publ., Novosibirsk, 1993 (in Russian) | MR
[10] Vorob'ev O. Yu., Eventology, SFU Publ., Krasnoyarsk, 2007 (in Russian)
[11] Vorob'ev O. Yu., Fomin A. Yu., Regression analysis of random events, KSU Publ., Krasnoyarsk, 2004 (in Russian)
[12] Lukyanova N. A., Semenova D. V., “The use of associative functions to estimate the target event probability”, Proc. konf. “Statistika i ee primenenie” (Tashkent, 16–17 October, 2015), NUUz Publ., Tashkent, 2015, 91–98 (in Russian)