Modeling of impurities segregation phenomenon in the melt crystallization process by continuous cellular automata method
Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 104-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is dedicated to the construction of a cellular automata model for the process of binary solutions directional crystallization. The main accent is put onto the occurring processes of impurities redistribution and melt concentration overcooling. The known idea about the action of the concentration overcooling mechanism is included into the model. The results of model calculation of impurity concentration distribution along the track of the sample during the crystallization are presented. Dependence of the melt phase transition temperature on the value of the impurity concentration is determined according to the calculated impurity distribution. Some varieties of uneven impurity distribution as a result of melt concentration overcooling are shown on graphs.
Keywords: cellular automata, segregation, concentration overcooling.
Mots-clés : phase transition
@article{PDM_2016_1_a9,
     author = {L. M. Shumylyak and V. V. Zhykharevych and S. E. Ostapov},
     title = {Modeling of impurities segregation phenomenon in the melt crystallization process by continuous cellular automata method},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {104--118},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_1_a9/}
}
TY  - JOUR
AU  - L. M. Shumylyak
AU  - V. V. Zhykharevych
AU  - S. E. Ostapov
TI  - Modeling of impurities segregation phenomenon in the melt crystallization process by continuous cellular automata method
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 104
EP  - 118
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_1_a9/
LA  - ru
ID  - PDM_2016_1_a9
ER  - 
%0 Journal Article
%A L. M. Shumylyak
%A V. V. Zhykharevych
%A S. E. Ostapov
%T Modeling of impurities segregation phenomenon in the melt crystallization process by continuous cellular automata method
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 104-118
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_1_a9/
%G ru
%F PDM_2016_1_a9
L. M. Shumylyak; V. V. Zhykharevych; S. E. Ostapov. Modeling of impurities segregation phenomenon in the melt crystallization process by continuous cellular automata method. Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 104-118. http://geodesic.mathdoc.fr/item/PDM_2016_1_a9/

[1] Von Neumann J., Theory of Self-Reproducing Automata, Univ. Illinois Press, Urbana–London, 1966, 742 pp.

[2] Li W., Packard N., Langton Ch., “Transition phenomena in cellular automata rule space”, Physica D, 45 (1990), 77–94 | DOI | MR | Zbl

[3] Wolfram S., A New Kind of Science, Wolfram Media, Champaign, 2002, 1264 pp. | MR | Zbl

[4] Chate H., Manneville P., “Criticality in cellular automata”, Physica D, 45 (1990), 122–135 | DOI | MR | Zbl

[5] Gutowitz H., “A hierarchical classification of cellular automata”, Physica D, 45 (1990), 136–156 | DOI | MR | Zbl

[6] McIntosh H., “Wolfram's class IV automata and a good life”, Physica D, 45 (1990), 105–121 | DOI | MR | Zbl

[7] Bandman O., “Cellular automata models of spatial dynamics”, Sistemnaya informatika, 2005, no. 10, 57–113 (in Russian)

[8] Vanag V., “Study of spatially extended dynamical systems using probabilistic cellular automata”, Uspekhi fizicheskikh nauk, 169:5 (1999), 481–505 (in Russian) | DOI

[9] Malinetskiy G., Stepantsov M., “Simulation of diffusion processes by means of cellular automata with Margolus neighborhood”, Zh. Vychisl. Mat. Mat. Fiz., 38:6 (1998), 1017–1020 (in Russian) | MR | Zbl

[10] Bobkov S., Voytko Yu., “Usage of cellular automata to modeling the nonlinear heat conduction problems”, Izvestiya Vysshikh Uchebnykh Zavedeniy. Khimiya I Khimicheskaya Tekhnologiya, 52:11 (2009), 126–128 (in Russian)

[11] Limanova N. I., Mamzin E. A., Matveev S. G., “Modeling of the heat exchange processes”, Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 19:3-1 (2009), 265–269 (in Russian)

[12] Benito J., Hernandez P., Modelling Segregation Through Cellular Automata: A Theoretical Answer, Working Papers. Ser. AD No 16, Instituto Valenciano de Investigaciones Económicas, 2007, 11 pp.

[13] Schelling T., “Dynamic models of segregation”, J. Math. Sociology, 1:2 (1971), 143–186 | DOI

[14] Janssens K. G. F., “An introductory review of cellular automata modeling of moving grain boundaries in polycrystalline materials”, Mathematics and Computers in Simulation, 80:7 (2010), 1361–1381 | DOI | MR | Zbl

[15] Golab R., Bachniak D., Bzowski K., Madej L., “Sensivity analysis of the cellular automata model for austenite-ferrite phase transformation in steels”, Appl. Math., 4 (2013), 1531–1536 | DOI

[16] Zhikharevich V. V., Shumilyak L. M., “The use of continuous cellular automata for the simulation of thermal conductivity in systems with phase transitions of the first kind”, Intern. J. Computing, 12:2 (2013), 142–150 (in Russian)

[17] Ezhovskiy Yu. K., Denisova O. V., Physical and Chemical Foundations of Semiconductor Materials Technology, SZTU Publ., St. Petersburg, 2005, 80 pp. (in Russian)

[18] Burton J. A., Prim R. C., Slichter W. P., “The Distribution of Solute in Crystals Growth from the Melt. Part I. Theoretical”, J. Chem. Phys., 21:11 (1991), 1987–1991 | DOI

[19] Zhikharevich V. V., Shumilyak L. M., Strutinskaya L. T., Ostapov S. E., “Construction and investigation of continuous cellular automata model of heat conductivity processes with first order phase transitions”, Komp'yuternye Issledovaniya i Modelirovanie, 5:2 (2013), 141–152 (in Russian)

[20] Strutin'ska L. T., Zhikharevich V. V., “Computer simulation of conditions of crystallization plane front formation in the process of growth of thermoelectrical material”, Fizika i Khimiya Tverdogo Tila, 13:4 (2012), 1041–1046 (in Ukrainian)

[21] Tiller W. A., Rutter J. W., Jackson K. A., Chalmers B., “The redistribution of solute atoms during the solidification of metals”, Acta Met., 8:4 (1953), 428 | DOI

[22] N. P. Lyakishev (eds.), The Phase Diagrams of Binary Metallic Systems, v. 1–3, Mashinostroenie Publ., Moscow, 1996–2000 (in Russian)