Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2016_1_a7, author = {I. S. Sergeev}, title = {On the complexity of computing prime tables on the {Turing} machine}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {86--91}, publisher = {mathdoc}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2016_1_a7/} }
I. S. Sergeev. On the complexity of computing prime tables on the Turing machine. Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 86-91. http://geodesic.mathdoc.fr/item/PDM_2016_1_a7/
[1] Crandall R., Pomerance C., Prime Numbers. A Computational Perspective, Springer, 2005, 597 pp. | MR | Zbl
[2] Schönhage A., Grotefeld A. F. W., Vetter E., Fast Algorithms: a Multitape Turing Machine Implementation, BI-Wissenschaftsverlag, Mannheim–Leipzig–Wien–Zürich, 1994, 298 pp. | MR | Zbl
[3] Aho A., Hopcroft J., Ullman J., The Design and Analysis of Computer Algorithms, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1974 | MR | Zbl
[4] Fürer M., How fast can we multiply large integers on an actual computer?, 2014., arXiv: 1402.1811 | MR
[5] Pritchard P., “A sublinear additive sieve for finding prime numbers”, Comm. ACM, 24:1 (1981), 18–23 | DOI | MR | Zbl
[6] Farach-Colton M., Tsai M.-T., On the complexity of computing prime tables, 2015, arXiv: 1504.05240
[7] Atkin A. O. L., Bernstein D. J., “Prime sieves using binary quadratic forms”, Math. Comput., 73:246 (2004), 1023–1030 | DOI | MR | Zbl
[8] Mairson H. G., “Some new upper bounds on the generation of prime numbers”, Comm. ACM, 20:9 (1977), 664–669 | DOI | MR | Zbl
[9] Rosser J., Schoenfeld L., “Approximate formulas for some functions of prime numbers”, Ill. J. Math., 6 (1962), 64–94 | MR | Zbl
[10] Sándor J., Mitrinović D. S., Crstici B., Handbook of Number Theory, v. I, Springer, Dordrecht, 2006, 622 pp. | MR | Zbl
[11] Knuth D. E., The Art of Computer Programming, v. 3, Sorting and Searching, Addison-Wesley, Reading, Massachusetts, 1998 | MR