On the period length of vector sequences generated by polynomials modulo prime powers
Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 57-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an upper bound on the period length for vector sequences defined recursively by systems of multivariate polynomials with coefficients in the ring of integers modulo a prime power.
Keywords: recurrence sequences, vector sequences, period length, polynomial functions, finite rings.
Mots-clés : polynomial permutations
@article{PDM_2016_1_a4,
     author = {N. G. Parvatov},
     title = {On the period length of vector sequences generated by polynomials modulo prime powers},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {57--61},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/}
}
TY  - JOUR
AU  - N. G. Parvatov
TI  - On the period length of vector sequences generated by polynomials modulo prime powers
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 57
EP  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/
LA  - en
ID  - PDM_2016_1_a4
ER  - 
%0 Journal Article
%A N. G. Parvatov
%T On the period length of vector sequences generated by polynomials modulo prime powers
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 57-61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/
%G en
%F PDM_2016_1_a4
N. G. Parvatov. On the period length of vector sequences generated by polynomials modulo prime powers. Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 57-61. http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/

[1] Anashin V. S., “Uniformly distributed sequences of $p$-adic integers”, Discrete Math. Appl., 12:6 (2002), 527–590 | MR | Zbl

[2] Larin M. V., “Transitive polynomial transformations of residue class rings”, Discrete Math. Appl., 12:2 (2002), 127–140 | DOI | MR | Zbl

[3] Ermilov D. M., Kozlitin O. A., “Cyclic structure of a polynomial generator over the Galois ring”, Mathematical Aspects of Cryptography, 4:1 (2013), 27–57 (in Russian)

[4] Eichenauer-Herrmann J., Grothe H., Lehn J., “On the period length of pseudo random vector sequences generated by matrix generators”, Matematics of Computation, 52:185 (1989), 145–148 | DOI | MR | Zbl

[5] Marshall I. B., “On the extension of Fermat's theorem to matrices of order $n$”, Proc. Edinburgh Math. Soc., 5 (1939–1941), 85–91 | DOI

[6] Niven I., “Fermat's theorem for matrices”, Duke Math. J., 15 (1948), 823–826 | DOI | MR | Zbl