On the period length of vector sequences generated by polynomials modulo prime powers
Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 57-61
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give an upper bound on the period length for vector sequences defined recursively by systems of multivariate polynomials with coefficients in the ring of integers modulo a prime power.
Keywords: recurrence sequences, vector sequences, period length, polynomial functions, finite rings.
Mots-clés : polynomial permutations
@article{PDM_2016_1_a4,
     author = {N. G. Parvatov},
     title = {On the period length of vector sequences generated by polynomials modulo prime powers},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {57--61},
     year = {2016},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/}
}
TY  - JOUR
AU  - N. G. Parvatov
TI  - On the period length of vector sequences generated by polynomials modulo prime powers
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 57
EP  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/
LA  - en
ID  - PDM_2016_1_a4
ER  - 
%0 Journal Article
%A N. G. Parvatov
%T On the period length of vector sequences generated by polynomials modulo prime powers
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 57-61
%N 1
%U http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/
%G en
%F PDM_2016_1_a4
N. G. Parvatov. On the period length of vector sequences generated by polynomials modulo prime powers. Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 57-61. http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/

[1] Anashin V. S., “Uniformly distributed sequences of $p$-adic integers”, Discrete Math. Appl., 12:6 (2002), 527–590 | MR | Zbl

[2] Larin M. V., “Transitive polynomial transformations of residue class rings”, Discrete Math. Appl., 12:2 (2002), 127–140 | DOI | MR | Zbl

[3] Ermilov D. M., Kozlitin O. A., “Cyclic structure of a polynomial generator over the Galois ring”, Mathematical Aspects of Cryptography, 4:1 (2013), 27–57 (in Russian)

[4] Eichenauer-Herrmann J., Grothe H., Lehn J., “On the period length of pseudo random vector sequences generated by matrix generators”, Matematics of Computation, 52:185 (1989), 145–148 | DOI | MR | Zbl

[5] Marshall I. B., “On the extension of Fermat's theorem to matrices of order $n$”, Proc. Edinburgh Math. Soc., 5 (1939–1941), 85–91 | DOI

[6] Niven I., “Fermat's theorem for matrices”, Duke Math. J., 15 (1948), 823–826 | DOI | MR | Zbl