On the period length of vector sequences generated by polynomials modulo prime powers
Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 57-61
Voir la notice de l'article provenant de la source Math-Net.Ru
We give an upper bound on the period length for vector sequences defined recursively by systems of multivariate polynomials with coefficients in the ring of integers modulo a prime power.
Keywords:
recurrence sequences, vector sequences, period length, polynomial functions, finite rings.
Mots-clés : polynomial permutations
Mots-clés : polynomial permutations
@article{PDM_2016_1_a4,
author = {N. G. Parvatov},
title = {On the period length of vector sequences generated by polynomials modulo prime powers},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {57--61},
publisher = {mathdoc},
number = {1},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/}
}
N. G. Parvatov. On the period length of vector sequences generated by polynomials modulo prime powers. Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 57-61. http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/