Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2016_1_a4, author = {N. G. Parvatov}, title = {On the period length of vector sequences generated by polynomials modulo prime powers}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {57--61}, publisher = {mathdoc}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/} }
N. G. Parvatov. On the period length of vector sequences generated by polynomials modulo prime powers. Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 57-61. http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/
[1] Anashin V. S., “Uniformly distributed sequences of $p$-adic integers”, Discrete Math. Appl., 12:6 (2002), 527–590 | MR | Zbl
[2] Larin M. V., “Transitive polynomial transformations of residue class rings”, Discrete Math. Appl., 12:2 (2002), 127–140 | DOI | MR | Zbl
[3] Ermilov D. M., Kozlitin O. A., “Cyclic structure of a polynomial generator over the Galois ring”, Mathematical Aspects of Cryptography, 4:1 (2013), 27–57 (in Russian)
[4] Eichenauer-Herrmann J., Grothe H., Lehn J., “On the period length of pseudo random vector sequences generated by matrix generators”, Matematics of Computation, 52:185 (1989), 145–148 | DOI | MR | Zbl
[5] Marshall I. B., “On the extension of Fermat's theorem to matrices of order $n$”, Proc. Edinburgh Math. Soc., 5 (1939–1941), 85–91 | DOI
[6] Niven I., “Fermat's theorem for matrices”, Duke Math. J., 15 (1948), 823–826 | DOI | MR | Zbl