On the period length of vector sequences generated by polynomials modulo prime powers
Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 57-61

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an upper bound on the period length for vector sequences defined recursively by systems of multivariate polynomials with coefficients in the ring of integers modulo a prime power.
Keywords: recurrence sequences, vector sequences, period length, polynomial functions, finite rings.
Mots-clés : polynomial permutations
@article{PDM_2016_1_a4,
     author = {N. G. Parvatov},
     title = {On the period length of vector sequences generated by polynomials modulo prime powers},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {57--61},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/}
}
TY  - JOUR
AU  - N. G. Parvatov
TI  - On the period length of vector sequences generated by polynomials modulo prime powers
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 57
EP  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/
LA  - en
ID  - PDM_2016_1_a4
ER  - 
%0 Journal Article
%A N. G. Parvatov
%T On the period length of vector sequences generated by polynomials modulo prime powers
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 57-61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/
%G en
%F PDM_2016_1_a4
N. G. Parvatov. On the period length of vector sequences generated by polynomials modulo prime powers. Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 57-61. http://geodesic.mathdoc.fr/item/PDM_2016_1_a4/