@article{PDM_2016_1_a2,
author = {D. A. Soshin},
title = {Representation of geometric types of {Boolean} functions in three variables by algebraic threshold functions},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {32--45},
year = {2016},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2016_1_a2/}
}
D. A. Soshin. Representation of geometric types of Boolean functions in three variables by algebraic threshold functions. Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 32-45. http://geodesic.mathdoc.fr/item/PDM_2016_1_a2/
[1] Sokolov A. P., “On the constructive characterization of threshold functions”, Fundam. Prikl. Mat., 15:4 (2009), 189–208 (in Russian) | MR
[2] Moraga K., “Multiple-valued threshold logic”, Opticheskie Vychisleniya, Mir Publ., Moscow, 1993, 162–182 (in Russian)
[3] Nikonov V. G., Nikonov N. V., “Features of threshold representations of $k$-valued functions”, Tr. Diskr. Mat., 11, no. 1, 2008, 60–85 (in Russian)
[4] Zuev Yu. A., “Combinatorial-probability and geometric methods in threshold logic”, Diskr. Mat., 3:2 (1991), 47–57 (in Russian) | MR | Zbl
[5] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 1, 2, Gelios ARV Publ., Moscow, 2003, 416 pp. (in Russian)
[6] Nikonov V. G., Soshin D. A., “The geometric method for constructing a balanced $k$-valued threshold functions and construction of substitutions based on them”, Obrazovatel'nye Resursy i Tekhnologii, 2014, no. 2(5), 76–80 (in Russian)
[7] Nikonov V. G., “The classification of minimal basic representations of Boolean functions of four variables”, Obozrenie Prikladnoy i Promyshlennoy Matematiki. Ser. Diskretnaya Matematika, 1:3 (1994), 458–545 (in Russian) | Zbl