Representation of geometric types of Boolean functions in three variables by algebraic threshold functions
Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 32-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebraic threshold functions are defined in the article. It is shown that the class $AT_n^k$ of all $k$-valued algebraic threshold functions in $n$ variables includes the class of $k$-valued ordinary threshold functions in $n$ variables and is much greater than it. It is proved that, for $k=2$ and $n=3$, the only geometric type is determined by a function which is not an algebraic threshold one, but others belong to the class $AT_3^2$. Algebraic threshold functions are simply realized in different computing areas, including the perspective optical ones, what makes important researching them for the synthesis of highspeed information processing systems.
Keywords: threshold functions, multiple-valued logic, algebraical threshold functions, geometric types.
@article{PDM_2016_1_a2,
     author = {D. A. Soshin},
     title = {Representation of geometric types of {Boolean} functions in three variables by algebraic threshold functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {32--45},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_1_a2/}
}
TY  - JOUR
AU  - D. A. Soshin
TI  - Representation of geometric types of Boolean functions in three variables by algebraic threshold functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 32
EP  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_1_a2/
LA  - ru
ID  - PDM_2016_1_a2
ER  - 
%0 Journal Article
%A D. A. Soshin
%T Representation of geometric types of Boolean functions in three variables by algebraic threshold functions
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 32-45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_1_a2/
%G ru
%F PDM_2016_1_a2
D. A. Soshin. Representation of geometric types of Boolean functions in three variables by algebraic threshold functions. Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 32-45. http://geodesic.mathdoc.fr/item/PDM_2016_1_a2/

[1] Sokolov A. P., “On the constructive characterization of threshold functions”, Fundam. Prikl. Mat., 15:4 (2009), 189–208 (in Russian) | MR

[2] Moraga K., “Multiple-valued threshold logic”, Opticheskie Vychisleniya, Mir Publ., Moscow, 1993, 162–182 (in Russian)

[3] Nikonov V. G., Nikonov N. V., “Features of threshold representations of $k$-valued functions”, Tr. Diskr. Mat., 11, no. 1, 2008, 60–85 (in Russian)

[4] Zuev Yu. A., “Combinatorial-probability and geometric methods in threshold logic”, Diskr. Mat., 3:2 (1991), 47–57 (in Russian) | MR | Zbl

[5] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, v. 1, 2, Gelios ARV Publ., Moscow, 2003, 416 pp. (in Russian)

[6] Nikonov V. G., Soshin D. A., “The geometric method for constructing a balanced $k$-valued threshold functions and construction of substitutions based on them”, Obrazovatel'nye Resursy i Tekhnologii, 2014, no. 2(5), 76–80 (in Russian)

[7] Nikonov V. G., “The classification of minimal basic representations of Boolean functions of four variables”, Obozrenie Prikladnoy i Promyshlennoy Matematiki. Ser. Diskretnaya Matematika, 1:3 (1994), 458–545 (in Russian) | Zbl