Comparison of the binary Golay code with the algebro-geometric code
Prikladnaâ diskretnaâ matematika, no. 4 (2015), pp. 77-82
Cet article a éte moissonné depuis la source Math-Net.Ru
The binary Golay code $\mathcal G=[23,12,7]_2$ and a binary algebro-geometric code $C$, proposed by the author, are considered for coding information in a binary symmetric channel with bandwidth $W=50$ KB/s, coder/decoder clock rate $1$ GHz, bit error ratio $p=0.005$, and required decoding probability $0.9999$. It is shown that both codes fit this channel and the code $C$ rate is 12 % greater than the code $\mathcal G$ rate. It is also shown how you can increase the decoding speed of the standard decoding algorithm by a proper choice of a divisor $D$ and the basis of $L(D)$ for constructing $C$. The decoding complexity of $C$ is estimated and the message transmission durations for $C$ and $\mathcal G$ are compared.
Mots-clés :
$AG$-code, $L$-construction
Keywords: Golay code, elliptic curve.
Keywords: Golay code, elliptic curve.
@article{PDM_2015_4_a6,
author = {P. M. Shiriaev},
title = {Comparison of the binary {Golay} code with the algebro-geometric code},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {77--82},
year = {2015},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2015_4_a6/}
}
P. M. Shiriaev. Comparison of the binary Golay code with the algebro-geometric code. Prikladnaâ diskretnaâ matematika, no. 4 (2015), pp. 77-82. http://geodesic.mathdoc.fr/item/PDM_2015_4_a6/
[1] Vleduts S. G., Nogin D. Yu., Tsfasman M. A., Algebro-Geometric Codes. Basic Concepts, MCCME Publ., Moscow, 2002, 504 pp. (in Russian)
[2] Semenovykh D. N., On Number-Theoretic Problems in Coding Theory, PhD Thesis, MSU Publ., Moscow, 2005, 60 pp. (in Russian)
[3] Menezes A., Wu Y.-H., Zuccherato R., An Elementary Introduction to Hyperelliptic Curves, Research report No. 19, Faculty of Mathematics, University of Waterloo, Waterloo, 1996, 35 pp.
[4] Bogachev K. Yu., Workshop on the Computer. Methods for Linear Systems Solving and Eigenvalues Finding, MSU Publ., Moscow, 1998, 79 pp. (in Russian)
[5] Mak-Vil'yams F. Dzh., Sloen N. Dzh. A., The Theory of Error-Correcting Codes, Svyaz' Publ., Moscow, 1979, 774 pp. (in Russian)