A new hybrid encryption scheme
Prikladnaâ diskretnaâ matematika, no. 4 (2015), pp. 56-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new hybrid encryption scheme based on ElGamal asymmetric encryption scheme with distributed secret keys is presented. The keys are used for defence against unauthorised intrusion of encrypted messages. The security of the scheme is based on elliptic curve discrete logarithm problem. The main feature of the scheme is the fact that plain message is not represented as a point of elliptic curve, hence, we can encrypt a long messages. We validate the cryptographic properties of the scheme and give some examples of its practical evaluations.
Keywords: asymmetric encryption, authentication, ElGamal scheme, elliptic curves.
@article{PDM_2015_4_a4,
     author = {A. Yu. Nesterenko and A. V. Pugachev},
     title = {A new hybrid encryption scheme},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {56--71},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_4_a4/}
}
TY  - JOUR
AU  - A. Yu. Nesterenko
AU  - A. V. Pugachev
TI  - A new hybrid encryption scheme
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 56
EP  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_4_a4/
LA  - ru
ID  - PDM_2015_4_a4
ER  - 
%0 Journal Article
%A A. Yu. Nesterenko
%A A. V. Pugachev
%T A new hybrid encryption scheme
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 56-71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_4_a4/
%G ru
%F PDM_2015_4_a4
A. Yu. Nesterenko; A. V. Pugachev. A new hybrid encryption scheme. Prikladnaâ diskretnaâ matematika, no. 4 (2015), pp. 56-71. http://geodesic.mathdoc.fr/item/PDM_2015_4_a4/

[1] Menezes A. J., van Oorschot P. C., Vanstone S. A., Handbook of Applied Cryptography, CRC Press, 1996, 816 pp.

[2] ISO/IEC 18033-2:2006, Information technology – Security techniques – Encryption algorithms – Part 2: Asymmetric ciphers, 2006

[3] ISO/IEC 9797-2:2011, Information technology – Security techniques – Message Authentication Codes (MACs) – Part 2: Mechanisms using a dedicated hash-function, 2011

[4] GOST R 34.13-2015, Information technology. Cryptographic protection of information. Operating modes of block ciphers, Standartinform, Moscow, 2015 (in Russian)

[5] Recommendations for standardization, The use of cryptographic algorithms, concomitant use of GOST R 34.10-2012 and GOST R 34.11-2012, Technical Committee 26, Moscow, 2014 (in Russian)

[6] Bellare M., Desai A., Pointcheval D., Rogaway P., “Relations among notions of security for public-key encryption schemes”, Crypto'98, LNCS, 1462, 1998, 26–46

[7] Nesterenko A. Yu., “Cycle detection algorithms and their applications”, J. Math. Sci., 182:4 (2012), 518–526 | DOI | MR | Zbl

[8] Blake I., Seroussi G., Smart N., Elliptic Curves in Cryptography, Cambridge University Press, 1999 | MR | Zbl

[9] Mao W., Modern Cryptography: Theory and Practice, Prentice Hall PTR, 2003, 648 pp. | MR

[10] Anosov V. D., Nesterenko A. Yu., “Asymmetric encryption scheme based on domestic cryptographic primitives”, Proc. IX Mezhdunar. konf. “Intellektual'nye sistemy i komp'yuternye nauki”, v. 1, Part 1, MSU Publ., Moscow, 2006, 45–47 (in Russian)

[11] GOST R 34.10-2012, Information technology. Cryptographic protection of information. The formation and checking of digital signature, Standartinform, Moscow, 2013 (in Russian)

[12] Bakhvalov N. S., Zhidkov N. P., Kobel'kov G. M., Numerical Methods, Nauka Publ., Moscow, 1987 (in Russian) | MR

[13] Vasilenko O. N., Number-Theoretical Algorithms in Cryptography, MCCME Publ., Moscow, 2003, 328 pp. (in Russian) | MR