Method for estimating connection power of binary and nominal variables
Prikladnaâ diskretnaâ matematika, no. 4 (2015), pp. 109-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nowadays, one of the common connection types in statistical data processing is the connection between numerical (nominal) and binary variables. We propose a new coefficient for evaluation of this type connection. It is quite different from Pearson's correlation coefficient and focused at the “ledge” type of connection, which means that the binary variable is expected to take one of its values only within some unknown but fixed boundaries for the the numerical variable. We call it ledge-coefficient. Application scope for the proposed coefficient is discussed. Algorithms for calculating ledge-coefficient and for searching all cases when the ledge connection is extremely weak or strong are proposed. Comparative examples for estimating connection power by ledge-coefficient and by Pearson's correlation coefficient or by Kendall's tau are shown.
Keywords: binary and nominal variables, normative intervals, ledge connection, binary string.
@article{PDM_2015_4_a10,
     author = {S. V. Dronov and I. Yu. Boyko},
     title = {Method for estimating connection power of binary and nominal variables},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {109--119},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_4_a10/}
}
TY  - JOUR
AU  - S. V. Dronov
AU  - I. Yu. Boyko
TI  - Method for estimating connection power of binary and nominal variables
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 109
EP  - 119
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_4_a10/
LA  - ru
ID  - PDM_2015_4_a10
ER  - 
%0 Journal Article
%A S. V. Dronov
%A I. Yu. Boyko
%T Method for estimating connection power of binary and nominal variables
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 109-119
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_4_a10/
%G ru
%F PDM_2015_4_a10
S. V. Dronov; I. Yu. Boyko. Method for estimating connection power of binary and nominal variables. Prikladnaâ diskretnaâ matematika, no. 4 (2015), pp. 109-119. http://geodesic.mathdoc.fr/item/PDM_2015_4_a10/

[1] Straus Sh. E., Richardson W. S., Glasziou P., Haynes R. B., Evidence Based Medicine, Elsevier Churchhill Livingstone, 2011, 295 pp.

[2] Dudareva Yu. A., Gur'eva V. A., Dronov S. V., Shoykhet Ya. N., “Comparative evaluation of the health status of descendants of people residing in environmentally unfriendly regions by means of mathematical modeling”, Klinicheskaya meditsina, 92:5 (2014), 66–70 (in Russian)

[3] Dronov S. V., Petukhova R. V., “One type of connection between nominal and binary variables”, Izvestiya AltSU, 65:1/2 (2010), 34–36 (in Russian)

[4] Mirmominov R. M., “One type of connection between nominal and binary variables”, Proc. conf. “Lomonosovskie chteniya na Altae: fundamental'nye problemy nauki i obrazovaniya” (Barnaul, 11–14 November 2014), AltSU Publ., Barnaul, 2014, 171–173 (in Russian)

[5] Vilenkin N. Ya., Vilenkin A. N., Vilenkin P. A., Combinatorics, MCCME Publ., Moscow, 2006, 400 pp. (in Russian)

[6] Dronov S. V., Dementjeva E. A., “A new approach to post-hoc problem in cluster analysis”, Model Assisted Statistics and Applications, 7:1 (2012), 49–55