Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2015_4_a1, author = {V. V. Kochergin and A. V. Mikhailovich}, title = {On the complexity of circuits in bases containing monotone elements with zero weights}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {24--31}, publisher = {mathdoc}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2015_4_a1/} }
TY - JOUR AU - V. V. Kochergin AU - A. V. Mikhailovich TI - On the complexity of circuits in bases containing monotone elements with zero weights JO - Prikladnaâ diskretnaâ matematika PY - 2015 SP - 24 EP - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2015_4_a1/ LA - ru ID - PDM_2015_4_a1 ER -
V. V. Kochergin; A. V. Mikhailovich. On the complexity of circuits in bases containing monotone elements with zero weights. Prikladnaâ diskretnaâ matematika, no. 4 (2015), pp. 24-31. http://geodesic.mathdoc.fr/item/PDM_2015_4_a1/
[1] Lupanov O. B., Asymptotic Estimations of Complexity of Control Systems, MSU Publ., Moscow, 1984 (in Russian)
[2] Savage J. E., The Complexity of Computing, Wiley, N.Y., 1976 | MR | Zbl
[3] Gilbert E. N., “Lattice theoretic properties of frontal switching functions”, J. Math. Phys., 33 (1954), 56–67 | DOI | MR
[4] Markov A. A., “On the inversion complexity of systems of functions”, J. ACM, 5:4 (1958), 331–334 | DOI | MR | Zbl | Zbl
[5] Markov A. A., “On the inversion complexity of systems of Boolean functions.”, Soviet Math. Dokl., 1963, no. 4, 694–696 | Zbl
[6] Nechiporuk E. I., “On the complexity of schemes in some bases containing nontrivial elements with zero weights”, Problemy Kibernetiki, 8, Fizmatgiz Publ., Moscow, 1962, 123–160 (in Russian)
[7] Nechiporuk E. I., “Complexity of schemes in certain bases containing nontrivial elements with zero weights”, Soviet Math. Dokl., 1961, no. 2, 1087–1088 | Zbl
[8] Nechiporuk E. I., “Complexity of superpositions in bases that contain nontrivial linear formulas with zero weights”, Soviet Physics. Dokl., 6:1 (1961), 6–9 | MR | Zbl
[9] Kochergin V. V., Mikhailovich A. V., Some extensions of the inversion complexity of Boolean functions, Cornell University Library, 2015, arXiv: 1506.04485
[10] Morizumi H., “Limiting negations in formulas”, LNCS, 5555, 2009, 701–712 | MR | Zbl
[11] Fischer M. J., “The complexity of negation-limited networks – a brief survey”, LNCS, 33, 1975, 71–82 | MR | Zbl
[12] Tanaka K., Nishino T., Beals R., “Negation-limited circuit complexity of symmetric functions”, Inf. Proc. Lett., 59:5 (1996), 273–279 | DOI | MR | Zbl
[13] Sung S., Tanaka K., “Limiting negations in bounded-depth circuits: an extension of Markovs theorem”, LNCS, 2906, 2003, 108–116 | MR | Zbl
[14] Morizumi H., Suzuki G., “Negation-limited inverters of linear size”, IEICE Trans. Inform. and Systems, E93-D:2 (2011), 257–262
[15] Guo S., Malkin T., Oliveira I. C., Rosen A., “The power of negations in cryptography”, LNCS, 9014, 2015, 36–65 | MR | Zbl
[16] Jukna S., Boolean Function Complexity. Advances and Frontiers, Springer, Berlin–Heidelberg, 2012, 620 pp. | MR | Zbl