On the complexity of circuits in bases containing monotone elements with zero weights
Prikladnaâ diskretnaâ matematika, no. 4 (2015), pp. 24-31

Voir la notice de l'article provenant de la source Math-Net.Ru

Complexity of Boolean functions and Boolean function systems realization in a base consisting of all monotone functions and a finite number of non-monotone functions is researched. The weight of any monotone function in the base is supposed to be 0, the weight of non-monotone function in it is positive. A. A. Markov studied special case of this base, where the non-monotone part consisted of the negation function. He showed that the minimum number of negation elements which are needed to realize an arbitrary function $f$ equals $\lceil\log_2(d(f)+1)\rceil$. Here $d(f)$ is the maximum number of value changes from 1 to 0 over all increasing chains of arguments tuples. The aim of this paper is to prove that the complexity of a Boolean function $f$ realization equals $\rho\lceil\log_2(d(f)+1)\rceil-\mathrm O(1)$, where $\rho$ is the minimum weight of non-monotone elements in the base. Similar generalization of the classical Markov's result concerning the realization of Boolean function systems is obtained too.
Keywords: Boolean circuits, logic circuits, bases with zero weight elements, Boolean function complexity, circuit complexity, inversion complexity, Markov's theorem.
@article{PDM_2015_4_a1,
     author = {V. V. Kochergin and A. V. Mikhailovich},
     title = {On the complexity of circuits in bases containing monotone elements with zero weights},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {24--31},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_4_a1/}
}
TY  - JOUR
AU  - V. V. Kochergin
AU  - A. V. Mikhailovich
TI  - On the complexity of circuits in bases containing monotone elements with zero weights
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 24
EP  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_4_a1/
LA  - ru
ID  - PDM_2015_4_a1
ER  - 
%0 Journal Article
%A V. V. Kochergin
%A A. V. Mikhailovich
%T On the complexity of circuits in bases containing monotone elements with zero weights
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 24-31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_4_a1/
%G ru
%F PDM_2015_4_a1
V. V. Kochergin; A. V. Mikhailovich. On the complexity of circuits in bases containing monotone elements with zero weights. Prikladnaâ diskretnaâ matematika, no. 4 (2015), pp. 24-31. http://geodesic.mathdoc.fr/item/PDM_2015_4_a1/