Construction of inhomogeneous 3D mesh for simulation of bacterial cell growth and division by cellular automata
Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 110-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing a 3D mesh for computer simulating the dynamics of a bacterial cells surface by cellular automata is presented. The idea of the proposed method is based on the dividing the cell surface into layers having the form of rings of nodes. This enables to change separate parts of the mesh structure without rebuilding the entire surface. Moreover, a fast algorithm for determining the neighbourhood of nodes on the spheroidal parts of the cell surface has been developed. The proposed algorithms have been implemented as a software package. A series of computational experiments showed the effectiveness of the proposed method for simulation of the interactions between the complex processes inside bacterial cells, leading to dynamical change of their surface.
Keywords: cellular automata, self-organization, surface dynamics, computer simulation, cell growth and division
Mots-clés : E.coli.
@article{PDM_2015_3_a8,
     author = {A. A. Vitvitsky},
     title = {Construction of inhomogeneous {3D} mesh for simulation of bacterial cell growth and division by cellular automata},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {110--120},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_3_a8/}
}
TY  - JOUR
AU  - A. A. Vitvitsky
TI  - Construction of inhomogeneous 3D mesh for simulation of bacterial cell growth and division by cellular automata
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 110
EP  - 120
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_3_a8/
LA  - ru
ID  - PDM_2015_3_a8
ER  - 
%0 Journal Article
%A A. A. Vitvitsky
%T Construction of inhomogeneous 3D mesh for simulation of bacterial cell growth and division by cellular automata
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 110-120
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_3_a8/
%G ru
%F PDM_2015_3_a8
A. A. Vitvitsky. Construction of inhomogeneous 3D mesh for simulation of bacterial cell growth and division by cellular automata. Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 110-120. http://geodesic.mathdoc.fr/item/PDM_2015_3_a8/

[1] Lutkenhaus J., “Assembly dynamics of the bacterial MinCDE system and spatial regulation of the $Z$ ring”, Annu. Rev. Biochem., 76 (2007), 539–562 | DOI

[2] Ivanov V., Mizuuchi K., “Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins”, Proc. Natl. Acad. Sci. USA, 107 (2010), 8071–8078 | DOI

[3] Hu Z., Lutkenhaus J., “Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE”, Mol. Microbiol., 34 (1999), 82–90

[4] Vitvitsky A. A., “Computer simulation of self-organization in the bacterial MinCDE system”, Math. biol. i bioinf., 9:2 (2014), 453–463 (in Russian) | DOI

[5] Loose M., “Spatial regulators for bacterial cell division self-organize into surface waves in vitro”, Science, 320 (2008), 789–792 | DOI

[6] Vitvitsky A., “Cellular automata simulation of self-organization in the bacterial MinCDE system”, Bull. Nov. Comp. Center, Comp. Sci., 36 (2014), 103–113

[7] Bonny M., Fischer-Friedrich E., Loose M., et al., “Membrane binding of MinE allows for a comprehensive description of min-protein pattern formation”, PLOS Comput. Biol., 9:12 (2013), 1–12 | DOI

[8] Bandman O. L., Kireeva A. E., “Stochastic cellular automata modeling of vibrations and autowaves in reaction-diffusion systems”, Sibirskii Zhurnal Vychislitel'noi Matematiki, 18:3 (2015), 255–274 (in Russian) | Zbl

[9] Kireeva A., “Parallel implementation of totalistic Cellular Automata model of stable patterns formation”, LNCS, 7979, 2013, 347–360

[10] A. G. Hoekstra, J. Kroc., P. M. A. Sloot (eds.), Simulating Complex Systems by Cellular Automata. Understanding Complex Systems, Springer, Berlin, 2010, 385 pp.

[11] Bandman O. L., “Fine-grained parallelism in computational mathematics”, Programmirovanie, 2001, no. 4, 5–20 | MR | Zbl

[12] Bandman O., “Cellular automata diffusion models for multicomputer implementation”, Bull. Nov. Comp. Center, Computer Sci., 36 (2014), 21–31

[13] Vitvitsky A. A., “Cellular automata with a dynamic structure for simulating the biological tissues growth”, Sibirskii Zhurnal Vychislitel'noi Matematiki, 17:4 (2014), 315–327 (in Russian)