Keywords: automorphism classes of vertices and edges
@article{PDM_2015_3_a6,
author = {M. N. Nazarov},
title = {An alternative way of defining finite graphs},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {83--94},
year = {2015},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2015_3_a6/}
}
M. N. Nazarov. An alternative way of defining finite graphs. Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 83-94. http://geodesic.mathdoc.fr/item/PDM_2015_3_a6/
[1] Nazarov M. N., “Alternative approaches to the description of classes of isomorphic graphs”, Prikladnaya diskretnaya matematika, 2014, no. 3, 86–97 (in Russian)
[2] Zykov A. A., Basics of Graph Theory, Vuzovskaya Kniga Publ., Moscow, 2004, 664 pp. (in Russian)
[3] Weininger D., Weininger A., Weininger J., “SMILES. 2. Algorithm for generation of unique SMILES notation”, J. Chem. Inf. Comput. Sci., 29:2 (1989), 97–101 | DOI
[4] Belov V. V., Vorob'ev E. M., Shatalov V. E., Graph Theory, Vysshaya Shkola Publ., Moscow, 1976, 391 pp. (in Russian)
[5] Brecher J., “Graphical representation of stereochemical configuration”, Pure Appl. Chem., 78:2 (2006), 1897–1970
[6] Kharari F., Graph Theory, KomKniga Publ., Moscow, 2006, 296 pp. (in Russian)
[7] Harary F., Palmer E. M., Graphical Enumeration, Academic Press, N.Y., 1973, 240 pp. | MR | Zbl
[8] Zykov A. A., “Hypergraphs”, Russian Mathematical Surveys, 29:6 (1974), 89–156 | DOI | MR | Zbl