Evolutionarily-fragmented algorithm for finding a~maximal flat part of a~graph
Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 74-82

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding a maximal flat part of a separable undirected graph is considered. It is shown that this problem can be represented as an optimization problem on a fragmented structure. An evolutionary-fragmented algorithm for finding approximate solutions of the problem is proposed.
Keywords: graph, maximally flat part of graph, isometric cycles, fragmented structure, evolutionarily-fragmented algorithm.
@article{PDM_2015_3_a5,
     author = {I. V. Kozin and S. V. Kurapov and S. I. Poljuga},
     title = {Evolutionarily-fragmented algorithm for finding a~maximal flat part of a~graph},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {74--82},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_3_a5/}
}
TY  - JOUR
AU  - I. V. Kozin
AU  - S. V. Kurapov
AU  - S. I. Poljuga
TI  - Evolutionarily-fragmented algorithm for finding a~maximal flat part of a~graph
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 74
EP  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_3_a5/
LA  - ru
ID  - PDM_2015_3_a5
ER  - 
%0 Journal Article
%A I. V. Kozin
%A S. V. Kurapov
%A S. I. Poljuga
%T Evolutionarily-fragmented algorithm for finding a~maximal flat part of a~graph
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 74-82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_3_a5/
%G ru
%F PDM_2015_3_a5
I. V. Kozin; S. V. Kurapov; S. I. Poljuga. Evolutionarily-fragmented algorithm for finding a~maximal flat part of a~graph. Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 74-82. http://geodesic.mathdoc.fr/item/PDM_2015_3_a5/