Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2015_3_a4, author = {A. V. Zharkova}, title = {Number of inaccessible states in finite dynamic systems of binary vectors associated with palms orientations}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {63--73}, publisher = {mathdoc}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2015_3_a4/} }
TY - JOUR AU - A. V. Zharkova TI - Number of inaccessible states in finite dynamic systems of binary vectors associated with palms orientations JO - Prikladnaâ diskretnaâ matematika PY - 2015 SP - 63 EP - 73 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2015_3_a4/ LA - ru ID - PDM_2015_3_a4 ER -
A. V. Zharkova. Number of inaccessible states in finite dynamic systems of binary vectors associated with palms orientations. Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 63-73. http://geodesic.mathdoc.fr/item/PDM_2015_3_a4/
[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl
[2] Abrosimov M. B., Graph Models for Fault-Tolerance, SSU Publ., Saratov, 2012, 192 pp. (in Russian)
[3] Kurnosova S. G., “T-irreducible extensions of some classes of graphs”, Teoreticheskie problemy informatiki i ee prilozheniy, 2004, no. 6, 113–125 (in Russian)
[4] Barbosa V. C., An Atlas of Edge-Reversal Dynamics, Chapman Hall/CRC, Boca Raton, 2001, 385 pp. | MR | Zbl
[5] Colon-Reyes O., Laubenbacher R., Pareigis B., “Boolean monomial dynamical systems”, Ann. Combinatorics, 8 (2004), 425–439 | DOI | MR | Zbl
[6] Salii V. N., “On a class of finite dynamic systems”, Vestnik Tomskogo gosudarstvennogo universiteta. Prilozhenie, 2005, no. 14, 23–26 (in Russian)
[7] Vlasova A. V., The study of evolutionary parameters in dynamic systems of binary vectors, Certificate of state registration of the computer program No. 2009614409, 20 august 2009 (in Russian)
[8] Zharkova A. V., “Attractors in finite dynamic systems of binary vectors associated with palms orientations”, Prikladnaya diskretnaya matematika, 2014, no. 3(25), 58–67 (in Russian)
[9] Zharkova A. V., “Inaccessible states in dynamic systems associated with paths and cycles”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:4 (2011), 116–123 (in Russian)
[10] Vlasova A. V., “Dynamic systems defined by palm trees”, Komp'yuternye nauki i informatsionnye tekhnologii, Materialy Mezhdunar. nauch. konf., SSU Publ., Saratov, 2009, 57–60 (in Russian)
[11] Sequence A135491, The online encyclopedia of integer sequences, , Date use: 04.08.2015 https://oeis.org/A135491
[12] Coin tossing, Wolfram MathWorld: the web's most extensive mathematical resource, , Date use: 04.08.2015. http://mathworld.wolfram.com/CoinTossing.html