Number of inaccessible states in finite dynamic systems of binary vectors associated with palms orientations
Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 63-73
Voir la notice de l'article provenant de la source Math-Net.Ru
Finite dynamic systems of binary vectors associated with palms orientations are considered. A palm is a tree which is a union of paths having a common end vertex and all these paths, except perhaps one, have the length 1. States of a dynamic system ($P_{s+c}$, $\gamma$), $s>0$, $c>1$, are all possible orientations of a palm with trunk length $s$ and leafs number $c$, and evolutionary function $\gamma$ transforms the given palm orientations by reversing all arcs that enter into sinks. The following formula for the number of inaccessible states in the considered dynamic systems is proved: $2^{s+c}-2^s-2^{s-3}+\Omega(-1)-2\Omega(1)+\Omega(3)$, where $\Omega(x)=\sum_{i = 1}^{\left[(s - x)/4\right]}(-1)^{i+1}\cdot2^{s-x-4i}\cdot C^i_{s-x-3i}$. As a corollary, the number of accessible states equals $2^s+2^{s-3}-\Omega(-1)+2\Omega(1)-\Omega(3)$. The corresponding statistical tables for systems with different parameters $s$ and $c$ are given.
Keywords:
finite dynamic system, inaccessible state, palm, starlike tree.
@article{PDM_2015_3_a4,
author = {A. V. Zharkova},
title = {Number of inaccessible states in finite dynamic systems of binary vectors associated with palms orientations},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {63--73},
publisher = {mathdoc},
number = {3},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2015_3_a4/}
}
TY - JOUR AU - A. V. Zharkova TI - Number of inaccessible states in finite dynamic systems of binary vectors associated with palms orientations JO - Prikladnaâ diskretnaâ matematika PY - 2015 SP - 63 EP - 73 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2015_3_a4/ LA - ru ID - PDM_2015_3_a4 ER -
A. V. Zharkova. Number of inaccessible states in finite dynamic systems of binary vectors associated with palms orientations. Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 63-73. http://geodesic.mathdoc.fr/item/PDM_2015_3_a4/