A semantically secure public-key cryptosystem based on~RSA
Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 32-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a semantically secure public-key cryptosystem based on the RSA cryptosystem. We describe possible preferences of the proposed cryptosystem with respect to the basic RSA cryptosystem. These preferences include a semantic security property, as well as more various choice of an encryption key, and the possibility to select this key by an ordinary user. It is shown that the knowledge of the modulus factorization does not allow to break the cryptosystem as it happens in the basic RSA.
Keywords: semantic security, public-key cryptosystem, RSA cryptosystem, encryption platform, encryption and decryption keys, the multiplicative group of a residue ring, the subgroup of quadratic residues.
@article{PDM_2015_3_a2,
     author = {V. A. Romankov},
     title = {A semantically secure public-key cryptosystem based {on~RSA}},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {32--40},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_3_a2/}
}
TY  - JOUR
AU  - V. A. Romankov
TI  - A semantically secure public-key cryptosystem based on~RSA
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 32
EP  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_3_a2/
LA  - ru
ID  - PDM_2015_3_a2
ER  - 
%0 Journal Article
%A V. A. Romankov
%T A semantically secure public-key cryptosystem based on~RSA
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 32-40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_3_a2/
%G ru
%F PDM_2015_3_a2
V. A. Romankov. A semantically secure public-key cryptosystem based on~RSA. Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 32-40. http://geodesic.mathdoc.fr/item/PDM_2015_3_a2/

[1] Rivest R., Shamir A., Adleman L., “A method for obtaining digital signatures and public-key cryptosystems”, Comm. ACM, 21:2 (1978), 120–126 | DOI | MR | Zbl

[2] Hinek M. J., Cryptanalysis of RSA and its Variants, Chapman Hall/CRC, Boca Raton, 2010 | MR | Zbl

[3] Song Y. Y., Cryptanalytic Attacks on RSA, Springer, 2008 | MR

[4] Stamp M., Low R. M., Applied Cryptanalysis. Breaking Ciphers in the Real World, John Wiley Sons, Hoboken, 2007

[5] Romankov V. A., Introduction to Cryptography, Forum Publ., Moscow, 2012, 239 pp. (in Russian)

[6] Koblitz N., A Course in Number Theory and Cryptography, Springer, N.Y., 1994, 235 pp. | MR | Zbl

[7] Maurer U. M., “Fast generation of prime numbers and secure public-key cryptographic parameters”, Cryptology, 8 (1995), 123–155 | MR | Zbl

[8] Rabin M. O., Digitalized Signatures and Public Key Functions as Intractable as Factorization, Technical Report, MIT, Cambridge, 1979