Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2015_2_a9, author = {M. V. Nikolaev}, title = {On the complexity of discrete logarithm problem in an interval in a~finite cyclic group with efficient inversion}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {97--102}, publisher = {mathdoc}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2015_2_a9/} }
TY - JOUR AU - M. V. Nikolaev TI - On the complexity of discrete logarithm problem in an interval in a~finite cyclic group with efficient inversion JO - Prikladnaâ diskretnaâ matematika PY - 2015 SP - 97 EP - 102 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2015_2_a9/ LA - ru ID - PDM_2015_2_a9 ER -
M. V. Nikolaev. On the complexity of discrete logarithm problem in an interval in a~finite cyclic group with efficient inversion. Prikladnaâ diskretnaâ matematika, no. 2 (2015), pp. 97-102. http://geodesic.mathdoc.fr/item/PDM_2015_2_a9/
[1] Gaudry P., Schost E., “A low-memory parallel version of Matsuo, Chao and Tsujii's algorithm”, LNCS, 3076, 2004, 208–222 | MR | Zbl
[2] Galbraith S. D., Holmes M., “A non-uniform birthday problem with applications to discrete logarithms”, Discr. Appl. Math., 160:10–11 (2012), 1547–1560 ; http://eprint.iacr.org/2010/616 | MR | Zbl
[3] Gallant R., Lambert R., Vanstone S., “Faster point multiplication on elliptic curves with efficient endomorphisms”, CRYPTO'2001, LNCS, 2139, 2001, 190–200 | MR | Zbl
[4] Wiener M. J., Zuccherato R. J., “Faster attacks on elliptic curve cryptosystems”, LNCS, 1556, 1999, 190–200 | MR | Zbl
[5] Galbraith S. D., Ruprai R. S., “Using equivalence classes to accelerate solving the Discrete Logarithm Problem in a short interval”, LNCS, 6056, 2010, 368–383 ; http://eprint.iacr.org/2010/615 | MR | Zbl
[6] Liu W., Improved algorithms for the 2-dimensional discrete logarithm problem with equivalence classes, MSc Thesis, University of Auckland, 2010 http://www.math.auckland.ac.nz/~sgal018/Wei-Liu-MSc.pdf
[7] Nikolaev M. V., Matyukhin D. V., “On the complexity of two-dimensional discrete logarithm problem in a finite cyclic group with effective automorphism of order 6”, Discr. Math. Appl., 23:3–4 (2013), 313–325 | DOI | DOI | MR | Zbl