On generic complexity of the quadratic residuosity problem
Prikladnaâ diskretnaâ matematika, no. 2 (2015), pp. 54-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generic-case approach to algorithmic problems was suggested by Myasnikov, Kapovich, Schupp and Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. Many classical undecidable or hard algorithmic problems become feasible in the generic case. But there are generically hard problems. For example, this is the classical discrete logarithm problem. In this talk we consider generic complexity of the quadratic residuosity problem. We fit this problem in the frameworks of generic complexity and prove that its natural subproblem is generically hard provided that the quadratic residuosity problem is hard in the worst case.
Keywords: generic complexity, quadratic residue, probabilistic algorithm.
@article{PDM_2015_2_a5,
     author = {A. N. Rybalov},
     title = {On generic complexity of the quadratic residuosity problem},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {54--58},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_2_a5/}
}
TY  - JOUR
AU  - A. N. Rybalov
TI  - On generic complexity of the quadratic residuosity problem
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 54
EP  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_2_a5/
LA  - ru
ID  - PDM_2015_2_a5
ER  - 
%0 Journal Article
%A A. N. Rybalov
%T On generic complexity of the quadratic residuosity problem
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 54-58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_2_a5/
%G ru
%F PDM_2015_2_a5
A. N. Rybalov. On generic complexity of the quadratic residuosity problem. Prikladnaâ diskretnaâ matematika, no. 2 (2015), pp. 54-58. http://geodesic.mathdoc.fr/item/PDM_2015_2_a5/

[1] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | MR | Zbl

[2] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Average-case complexity for the word and membership problems in group theory”, Adv. Math., 190 (2005), 343–359 | MR | Zbl

[3] Hamkins J. D., Miasnikov A. G., “The halting problem is decidable on a set of asymptotic probability one”, Notre Dame J. Formal Logic, 47:4 (2006), 515–524 | MR | Zbl

[4] Gilman R., Miasnikov A. G., Myasnikov A. D., Ushakov A., “Report on generic case complexity”, Herald of Omsk University, 2007, Special Issue, 103–110

[5] Blum M., Micali S., “How to generate cryptographically strong sequences of pseudorandom bits”, SIAM J. Comput., 13:4 (1984), 850–864 | MR | Zbl

[6] Mao V., Modern Cryptography: Theory and Practice, Wil'yams Publ., Moscow, 2005, 768 pp. (in Russian)

[7] Impagliazzo R., Wigderson A., “P=BPP unless E has subexponential circuits: derandomizing the XOR Lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229 | MR

[8] Myasnikov A., Rybalov A., “Generic complexity of undecidable problems”, J. Symbolic Logic, 73:2 (2008), 656–673 | MR | Zbl

[9] Rybalov A., “Generic complexity of Presburger Arithmetic”, Theory Comput. Systems, 46:1 (2010), 2–8 | MR | Zbl