Functional decomposability criteria for quadratic threshold Boolean functions
Prikladnaâ diskretnaâ matematika, no. 2 (2015), pp. 37-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Threshold functions provide a simple but fundamental model for many questions investigated in image recognition, artificial neural networks and many other areas. In this paper, the results in Boolean threshold function decomposition are advanced to Boolean functions represented by one quadratic inequality. Quadratic polynomials are the most compact non-linear polynomials and this property sometimes is quite important. We prove three criteria for non-trivial decomposition of quadratic Boolean threshold functions. One of them can be applied without analysis of truth table and only uses the threshold structure parameters.
Keywords: Boolean functions, threshold functions, quadratic inequalities.
Mots-clés : decomposition
@article{PDM_2015_2_a3,
     author = {A. N. Shurupov},
     title = {Functional decomposability criteria for quadratic threshold {Boolean} functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {37--45},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_2_a3/}
}
TY  - JOUR
AU  - A. N. Shurupov
TI  - Functional decomposability criteria for quadratic threshold Boolean functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 37
EP  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_2_a3/
LA  - ru
ID  - PDM_2015_2_a3
ER  - 
%0 Journal Article
%A A. N. Shurupov
%T Functional decomposability criteria for quadratic threshold Boolean functions
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 37-45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_2_a3/
%G ru
%F PDM_2015_2_a3
A. N. Shurupov. Functional decomposability criteria for quadratic threshold Boolean functions. Prikladnaâ diskretnaâ matematika, no. 2 (2015), pp. 37-45. http://geodesic.mathdoc.fr/item/PDM_2015_2_a3/

[1] Cheremushkin A. V., “Iteration-free decomposition of strongly dependent functions”, Discr. Math. Appl., 14:5 (2004), 439–478 | DOI | MR | Zbl

[2] Ezhov A. A., Shumskiy S. A., Neurocomputing and its Applications in Economics and Business, MEPhI Publ., Moscow, 1998, 222 pp. (in Russian)

[3] Shurupov A. N., “On the functional decomposability of Boolean threshold functions”, Discr. Math. Appl., 7:3 (1997), 257–272 | DOI | MR | Zbl

[4] Ashenhurst R. L., “The decomposition of switching functions”, Ann. Comput. Laborat. Harv. Univ, 29 (1959), 74–116 | MR

[5] Dertouzos M., Threshold Logic: A Synthesis Approach, The M.I.T. Press, Cambridge, MA, 1965

[6] Logachev O. A., Sal'nikov A. A., Yashchenko V. V., Boolean Functions in Coding Theory and Cryptology, MCCME Publ., Moscow, 2004, 470 pp. (in Russian) | MR

[7] Podol'skiy V. V., Ratings Scales Perceptrons (Polynomial Threshold Boolean Functions), Abstract of PhD in Physics and Mathematics thesis, MSU Publ., Moscow, 2009 (in Russian)

[8] Crama Y., Hammer P., Boolean Functions. Theory, Algorithms and Applications, Cambridge University Press, 2011 | MR | Zbl