Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2015_2_a3, author = {A. N. Shurupov}, title = {Functional decomposability criteria for quadratic threshold {Boolean} functions}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {37--45}, publisher = {mathdoc}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2015_2_a3/} }
A. N. Shurupov. Functional decomposability criteria for quadratic threshold Boolean functions. Prikladnaâ diskretnaâ matematika, no. 2 (2015), pp. 37-45. http://geodesic.mathdoc.fr/item/PDM_2015_2_a3/
[1] Cheremushkin A. V., “Iteration-free decomposition of strongly dependent functions”, Discr. Math. Appl., 14:5 (2004), 439–478 | DOI | MR | Zbl
[2] Ezhov A. A., Shumskiy S. A., Neurocomputing and its Applications in Economics and Business, MEPhI Publ., Moscow, 1998, 222 pp. (in Russian)
[3] Shurupov A. N., “On the functional decomposability of Boolean threshold functions”, Discr. Math. Appl., 7:3 (1997), 257–272 | DOI | MR | Zbl
[4] Ashenhurst R. L., “The decomposition of switching functions”, Ann. Comput. Laborat. Harv. Univ, 29 (1959), 74–116 | MR
[5] Dertouzos M., Threshold Logic: A Synthesis Approach, The M.I.T. Press, Cambridge, MA, 1965
[6] Logachev O. A., Sal'nikov A. A., Yashchenko V. V., Boolean Functions in Coding Theory and Cryptology, MCCME Publ., Moscow, 2004, 470 pp. (in Russian) | MR
[7] Podol'skiy V. V., Ratings Scales Perceptrons (Polynomial Threshold Boolean Functions), Abstract of PhD in Physics and Mathematics thesis, MSU Publ., Moscow, 2009 (in Russian)
[8] Crama Y., Hammer P., Boolean Functions. Theory, Algorithms and Applications, Cambridge University Press, 2011 | MR | Zbl