Cellular automaton simulation of the fracture process for brittle materials
Prikladnaâ diskretnaâ matematika, no. 2 (2015), pp. 103-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-dimensional probabilistic cellular automaton is constructed to simulate the evolution of cluster structure of elementary damages in loaded materials. The comparison of the statistical characteristics of time series “number of clusters” and “number of elementary damages” are made for three-dimensional and two-dimensional cellular automata. It is shown, that the transition of the time autocorrelation function of a random process “number of elementary damages” to the range of negative correlations and the emergence of the second linear portion on the statistics of the normalized Hurst's range can be interpreted as presages of material transition to the stage preceding to complete destruction. It is found that, for the three-dimensional model based on the value of probability of damage cluster perimeter germination, there are two qualitatively different modes of damage accumulation.
Keywords: cellular automaton, damage clusters, fracture prediction.
@article{PDM_2015_2_a10,
     author = {D. V. Alekseev and G. A. Kazunina and A. V. Cherednichenko},
     title = {Cellular automaton simulation of the fracture process for brittle materials},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {103--117},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_2_a10/}
}
TY  - JOUR
AU  - D. V. Alekseev
AU  - G. A. Kazunina
AU  - A. V. Cherednichenko
TI  - Cellular automaton simulation of the fracture process for brittle materials
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 103
EP  - 117
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_2_a10/
LA  - ru
ID  - PDM_2015_2_a10
ER  - 
%0 Journal Article
%A D. V. Alekseev
%A G. A. Kazunina
%A A. V. Cherednichenko
%T Cellular automaton simulation of the fracture process for brittle materials
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 103-117
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_2_a10/
%G ru
%F PDM_2015_2_a10
D. V. Alekseev; G. A. Kazunina; A. V. Cherednichenko. Cellular automaton simulation of the fracture process for brittle materials. Prikladnaâ diskretnaâ matematika, no. 2 (2015), pp. 103-117. http://geodesic.mathdoc.fr/item/PDM_2015_2_a10/

[1] Kuksenko V. S., “Diagnosis and prognosis of large-scale objects destruction”, Fizika Tverdogo Tela, 47:5 (2005), 788–792 (in Russian)

[2] Kurlenya M. V., Vostretsov A. P., Kulakov G. I., Yakovitskaya G. E., Register and Processing of the Signals of the Rocks Electromagnetic Radiation, SB RAS, Novosibirsk, 2000, 232 pp. (in Russian)

[3] Botvina L. R., Destruction: Kinetics, Mechanisms, General Patterns, Nauka Publ., Moscow, 2008, 334 pp. (in Russian)

[4] Bandman O. L., “Cellular automata models of spatial dynamics”, Sistemnaya Informatika, 2006, no. 10, 59–113 (in Russian)

[5] Bandman O. L., “Discrete models of physical-chemical processes”, Prikladnaya Diskretnaya Matematika, 2009, no. 3, 33–49 (in Russian)

[6] Lobanov A. I., “Model of cellular automata”, Komp'yuternye issledovaniya i modelirovanie, 2:3 (2010), 273–293 (in Russian)

[7] Gilyarov V. L., Varkentin M. S., Korsukov V. E., et al., “Formation of power-law distributions of defects in size during the fracture of materials”, Fizika Tverdogo Tela, 52:7 (2010), 1311–1315 (in Russian)

[8] Gilyarov V. L., “Simulation of crack growth in the destruction of heterogeneous materials”, Fizika Tverdogo Tela, 53:4 (2011), 707–710 (in Russian)

[9] Alekseev D. V., Kazunina G. A., “Modeling the kinetics of damage accumulation of probabilistic cellular automata”, Fizika Tverdogo Tela, 48:2 (2006), 255–261 (in Russian)

[10] Alekseev D. V., Kazunina G. A., “Modeling the evolution of the cluster structure of the elementary damage in loaded materials”, Deformatsiya i Razrushenie Materialov, 2009, no. 8, 10–14 (in Russian)

[11] Guld Kh., Tobochnik Ya., Computer Modeling in Physics, Pt. 2, Mir Publ., Moscow, 1990, 390 pp. (in Russian)

[12] Feder J., Fractals, Springer, N.Y., 1988 | MR | MR

[13] Alekseev D. V., Egorov P. V., “Persistence accumulation of cracks during loading of rock and concentration failure criterion”, Doklady Akademii Nauk, 1993, no. 1, 779–780 (in Russian)

[14] Alekseev D. V., Kazunina G. A., “Model study of the damage accumulation kinetics by the Hirst normed span method”, Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh, 2006, no. 4, 69–74 (in Russian)

[15] Kazunina G. A., Mal'shin A. A., “Study of the kinetics of damage accumulation in loaded materials based on impulse electromagnetic and photon emission.”, Russian Physics J., 52:6 (2009), 598–601