The exponential generating functions for sequence of the numbers of $k$-partite graphs
Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 84-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

A specific kind of exponential generating functions for the sequence of the numbers of $k$-partite graphs is considered. These functions take into account the numbers of vertices in each part. A relation is obtained for such generating functions. This relation is a variant of the exponential theorem for these generating functions. It is concluded that it is possible to generalize the obtained relation for hypergraphs and multigraphs. The obtained expression and its simplified special cases are analyzed. The applications of the relations and special cases in physics and mathematics are considered.
Mots-clés : $k$-partite graph
Keywords: hypergraph, multigraph, connected graph, cover, generating functions, exponential theorem.
@article{PDM_2015_1_a8,
     author = {R. M. Ganopolsky},
     title = {The exponential generating functions for sequence of the numbers of $k$-partite graphs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {84--91},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_1_a8/}
}
TY  - JOUR
AU  - R. M. Ganopolsky
TI  - The exponential generating functions for sequence of the numbers of $k$-partite graphs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 84
EP  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_1_a8/
LA  - ru
ID  - PDM_2015_1_a8
ER  - 
%0 Journal Article
%A R. M. Ganopolsky
%T The exponential generating functions for sequence of the numbers of $k$-partite graphs
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 84-91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_1_a8/
%G ru
%F PDM_2015_1_a8
R. M. Ganopolsky. The exponential generating functions for sequence of the numbers of $k$-partite graphs. Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 84-91. http://geodesic.mathdoc.fr/item/PDM_2015_1_a8/

[1] Stenli R., Perechislitel'naja kombinatorika. Derev'ja, proizvodjashhie funkcii i simmetricheskie funkcii, Mir Publ., Moscow, 2005 (in Russian) | MR

[2] Harary F., Graph Theory, Addison-Wesley, Reading, 1994 | MR

[3] Uilson R., Vvedenie v teoriju grafov, Mir Publ., Moscow, 1977 (in Russian) | MR

[4] Ganopolsky R. M., “Chislo neuporjadochennyh pokrytij konechnogo mnozhestva podmnozhestvami fiksirovannogo razmera”, Prikladnaya Diskretnaya Matematika, 2010, no. 4(10), 5–17 (in Russian)

[5] Ganopolsky R. M., “Proizvodjashhie funkcii posledovatel'nosti chisel pokrytij konechnogo mnozhestva”, Prikladnaya Diskretnaya Matematika, 2011, no. 1(11), 5–13 (in Russian)

[6] Ganopolsky R. M., “Proizvodjashhie funkcii posledovatel'nosti chisel svjaznyh pokrytij”, Prikladnaya Diskretnaya Matematika, 2013, no. 3(21), 5–10 (in Russian)

[7] Kaku M., Vvedenie v teoriju superstrun, Mir Publ., Moscow, 1999 (in Russian)

[8] Fejnman R., Statisticheskaja mehanika, Kurs lekcij, Mir Publ., Moscow, 1975 (in Russian)

[9] Abrikosov A. A., Gor'kov L. P., Dzjaloshinskij I. E., Metody kvantovoj teorii polja v statisticheskoj fizike, Fizmatgiz Publ., Moscow, 1962 (in Russian) | MR

[10] Lifshic E. M., Pitaevskij L. P., Statisticheskaja fizika, Part 2, Nauka Publ., Moscow, 1978 (in Russian) | MR

[11] Fomichev V. M., Metody diskretnoj matematiki v kriptologii, Dialog-MIFI Publ., Moscow, 2010 (in Russian)