On distribution of number of ones in binary multicycle sequence
Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 69-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to studying the stability of probability-theoretical model which describes Pohl generator. For the purpose, we investigate the distribution of random variable equalled to the number of ones in the outcome sequence of a multicycle generator over the field $\mathrm{GF}(2)$ in the case when binary random variables filling the registers are independent and the probabilities of one's occurrences in registers differ from 1/2 and can change with growing the registers lengths. The exact expressions for expectation and variance of the random variable are given. For the case when the number of registers is finite, we derive the conditions under which the distribution of normalized number of ones converges to the distribution of the product of independent random variables each of which is distributed by standard normal law. We prove the central limit theorem for normalized number of ones when the number of registers tends to infinity. It is shown that breaking the property of equiprobable distribution for binary characters in registers results in significant differences of properties of the limit distributions compared to equiprobable case.
Keywords: multicycle sequence, Pohl generator, central limit theorem.
@article{PDM_2015_1_a6,
     author = {N. M. Mezhennaya},
     title = {On distribution of number of ones in binary multicycle sequence},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {69--77},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_1_a6/}
}
TY  - JOUR
AU  - N. M. Mezhennaya
TI  - On distribution of number of ones in binary multicycle sequence
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 69
EP  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_1_a6/
LA  - ru
ID  - PDM_2015_1_a6
ER  - 
%0 Journal Article
%A N. M. Mezhennaya
%T On distribution of number of ones in binary multicycle sequence
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 69-77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_1_a6/
%G ru
%F PDM_2015_1_a6
N. M. Mezhennaya. On distribution of number of ones in binary multicycle sequence. Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 69-77. http://geodesic.mathdoc.fr/item/PDM_2015_1_a6/

[1] Pohl P., The multicyclic vector method of generating pseudo-random numbers. I. Theoretical background, description of the method and algebraic analysis, Report TRITA-NA-7307, Royal Inst. of Technology, Stockholm, Sweden, 1973, 36 pp.

[2] Pohl P., “Description of MCV, a pseudo-random number generator”, Scand. Actuarial J., 1976:1 (1976), 1–14 | DOI | MR | Zbl

[3] Mezhennaja N. M., Mihajlov V. G., “O raspredelenii chisla edinic v vyhodnoj posledovatel'nosti generatora Pola nad polem $GF(2)$”, Matematicheskie Voprosy Kriptografii, 4:4 (2013), 95–107 (in Russian)

[4] Mezhennaja N. M., “Predel'nye teoremy dlja chisla plotnyh serij s zadannymi parametrami v vyhodnoj posledovatel'nosti generatora Pola”, Inzhenernyj Zhurnal: Nauka i Innovacii, 2013, no. 4(16), 1–8 (in Russian)

[5] Mezhennaya N. M., “Convergence rate estimators for the number of ones in outcome sequence of MCV generator with $m$-dependent registers items”, Siber. Electr. Math. Rep., 11 (2014), 18–25

[6] Douglas W. M., “A nonlinear random number generator with known, long cycle length”, Cryptologia, 17:1 (1993), 55–62 | DOI | MR | Zbl

[7] Deng L.-Y., Xu H., “A system of high-dimensional, efficient, long-cycle and portable uniform random number generators”, ACM Trans. Modeling Comp. Simul., 13:4 (2003), 299–309 | DOI | Zbl

[8] Shirjaev A. N., Verojatnost', Nauka Publ., Moscow, 1989, 581 pp. (in Russian) | MR

[9] Sevast'janov B. A., Kurs teorii verojatnostej i matematicheskoj statistiki, Nauka Publ., Moscow, 1982, 256 pp. (in Russian) | MR