Features of maximal period polynomial generators over the Galois ring
Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 52-61
Voir la notice de l'article provenant de la source Math-Net.Ru
For a polynomial mapping over the Galois ring $R=\mathrm{GR}(q^n,p^n)$ with the cardinality $q^n$ and characteristic $p^n$, the maximal length of a cycle equals $q(q-1)p^{n-2}$. In this paper, we present an algorithm for constructing the system of representatives of all maximal length cycles and an algorithm for constructing an element in a cycle of maximal length for a polynomial substitution $f\in R[x]$. The complexity of the first algorithm equals $d(q-1)q^{n-1}$ multiplication operations and $d(q-1)q^{n-1}$ addition operations in $R$, the complexity of the second algorithm equals $dq$ multiplication operations and $dq$ addition operations in $R$ where $d=\deg(f)$.
Keywords:
nonlinear recurrent sequences, Galois ring.
@article{PDM_2015_1_a4,
author = {D. M. Ermilov},
title = {Features of maximal period polynomial generators over the {Galois} ring},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {52--61},
publisher = {mathdoc},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2015_1_a4/}
}
D. M. Ermilov. Features of maximal period polynomial generators over the Galois ring. Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 52-61. http://geodesic.mathdoc.fr/item/PDM_2015_1_a4/