Features of maximal period polynomial generators over the Galois ring
Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 52-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a polynomial mapping over the Galois ring $R=\mathrm{GR}(q^n,p^n)$ with the cardinality $q^n$ and characteristic $p^n$, the maximal length of a cycle equals $q(q-1)p^{n-2}$. In this paper, we present an algorithm for constructing the system of representatives of all maximal length cycles and an algorithm for constructing an element in a cycle of maximal length for a polynomial substitution $f\in R[x]$. The complexity of the first algorithm equals $d(q-1)q^{n-1}$ multiplication operations and $d(q-1)q^{n-1}$ addition operations in $R$, the complexity of the second algorithm equals $dq$ multiplication operations and $dq$ addition operations in $R$ where $d=\deg(f)$.
Keywords: nonlinear recurrent sequences, Galois ring.
@article{PDM_2015_1_a4,
     author = {D. M. Ermilov},
     title = {Features of maximal period polynomial generators over the {Galois} ring},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {52--61},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_1_a4/}
}
TY  - JOUR
AU  - D. M. Ermilov
TI  - Features of maximal period polynomial generators over the Galois ring
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 52
EP  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_1_a4/
LA  - ru
ID  - PDM_2015_1_a4
ER  - 
%0 Journal Article
%A D. M. Ermilov
%T Features of maximal period polynomial generators over the Galois ring
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 52-61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_1_a4/
%G ru
%F PDM_2015_1_a4
D. M. Ermilov. Features of maximal period polynomial generators over the Galois ring. Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 52-61. http://geodesic.mathdoc.fr/item/PDM_2015_1_a4/

[1] Carlitz L., “Functions and polynomials (mod $p^n$)”, Acta Arithm., 9 (1964), 66–78 | MR

[2] Anashin V. S., “O gruppah i kol'cah, obladajushhih tranzitivnymi polinomami”, XVI Vsesojuznaja algebraicheskaja konferencija, Tezisy. Part II, Leningrad, 1981, 4–5 (in Russian)

[3] Knuth D., The Art of Computer Programming, v. 2, Addison-Wesley, Reading, Massachusetts, 1998 | MR | Zbl

[4] Larin M. V., “Tranzitivnye polinomial'nye preobrazovanija kolec vychetov”, Diskretnaya matematika, 14:2 (2002), 20–32 (in Russian) | DOI | MR | Zbl

[5] Anashin V. S., “Ravnomerno raspredelennye posledovatel'nosti celyh $p$-adicheskih chisel”, Diskretnaya matematika, 14:4 (2002), 3–64 (in Russian) | DOI | MR | Zbl

[6] Viktorenkov V. E., “Orgraf polinomial'nogo preobrazovanija nad kommutativnym lokal'nym kol'com”, Obozrenie prikl. i promyshl. matem., 7:2 (2000), 327 (in Russian)

[7] Nechaev A. A., “Polinomial'nye preobrazovanija konechnyh kommutativnyh kolec glavnyh idealov”, Matem. Zametki, 27:6 (1980), 885–897 (in Russian) | MR | Zbl

[8] Ermilov D. M., Kozlitin O. A., “Ciklovaja struktura polinomial'nogo generatora nad kol'com Galua”, Matem. Voprosy Kriptografii, 4:1 (2013), 27–57 (in Russian)

[9] Ermilov D. M., “O ciklovoj strukture biektivnyh polinomial'nyh preobrazovanij kolec Galua maksimal'nogo perioda”, Obozrenie prikl. i promyshl. matem., 20:3 (2013) (in Russian)

[10] Elizarov V. P., Konechnye kol'ca, Gelios ARV Publ., Moscow, 2006, 304 pp. (in Russian)

[11] Gluhov M. M., Elizarov V. P., Nechaev A. A., Algebra, Gelios ARV Publ., Moscow, 2003, 749 pp. (in Russian)