Bounds for the number of rounds with impossible differences in generalized Feistel schemes
Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 37-51
Voir la notice de l'article provenant de la source Math-Net.Ru
The class of ciphers described by a generalized Feistel scheme is considered. Some upper and lower bounds for the maximum number of rounds with impossible differences are provided. They do not depend on the type of Feistel scheme and on the number of nonlinear functions or blocks in the register.
Keywords:
block cipher, generalized Feistel scheme, impossible differential, differential probability.
@article{PDM_2015_1_a3,
author = {M. A. Pudovkina and A. V. Toktarev},
title = {Bounds for the number of rounds with impossible differences in generalized {Feistel} schemes},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {37--51},
publisher = {mathdoc},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2015_1_a3/}
}
TY - JOUR AU - M. A. Pudovkina AU - A. V. Toktarev TI - Bounds for the number of rounds with impossible differences in generalized Feistel schemes JO - Prikladnaâ diskretnaâ matematika PY - 2015 SP - 37 EP - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2015_1_a3/ LA - ru ID - PDM_2015_1_a3 ER -
M. A. Pudovkina; A. V. Toktarev. Bounds for the number of rounds with impossible differences in generalized Feistel schemes. Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 37-51. http://geodesic.mathdoc.fr/item/PDM_2015_1_a3/