Bounds for the number of rounds with impossible differences in generalized Feistel schemes
Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 37-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of ciphers described by a generalized Feistel scheme is considered. Some upper and lower bounds for the maximum number of rounds with impossible differences are provided. They do not depend on the type of Feistel scheme and on the number of nonlinear functions or blocks in the register.
Keywords: block cipher, generalized Feistel scheme, impossible differential, differential probability.
@article{PDM_2015_1_a3,
     author = {M. A. Pudovkina and A. V. Toktarev},
     title = {Bounds for the number of rounds with impossible differences in generalized {Feistel} schemes},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {37--51},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_1_a3/}
}
TY  - JOUR
AU  - M. A. Pudovkina
AU  - A. V. Toktarev
TI  - Bounds for the number of rounds with impossible differences in generalized Feistel schemes
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 37
EP  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_1_a3/
LA  - ru
ID  - PDM_2015_1_a3
ER  - 
%0 Journal Article
%A M. A. Pudovkina
%A A. V. Toktarev
%T Bounds for the number of rounds with impossible differences in generalized Feistel schemes
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 37-51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_1_a3/
%G ru
%F PDM_2015_1_a3
M. A. Pudovkina; A. V. Toktarev. Bounds for the number of rounds with impossible differences in generalized Feistel schemes. Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 37-51. http://geodesic.mathdoc.fr/item/PDM_2015_1_a3/

[1] Nyberg K., “Generlized Feistel networks”, ASIACRYPT'1996, LNCS, 1163, 1996, 91–104 | MR | Zbl

[2] Schneier B., Kelsey J., “Unbalanced Feistel networks and block cipher design”, FSE'2005, LNCS, 3557, 2005, 121–144

[3] Zhang L., Wu W., Zhang L., “Proposition of two cipher structures”, Inscrypt'2009, LNCS, 6151, 2010, 215–229 | MR | Zbl

[4] Shibutani K., Isobe T., Hiwatari H., et al., “Piccolo: an ultra-lightweight blockcipher”, CHES'2011, LNCS, 6917, 2011, 342–357 | Zbl

[5] Suzaki T., Minematsu K., “Improving the generalized Feistel”, FSE'2010, LNCS, 6147, 2010, 19–39 | Zbl

[6] Lai X., Massey J. L., Murphy S., “Markov ciphers and differential cryptanalysis”, EuroCrypt'91, LNCS, 547, 1991, 17–38 | MR | Zbl

[7] Knudsen L. R., DEAL – a 128-bit block cipher, Technical report 151, Department of Informatics, University of Bergen, Bergen, Norway, February, 1998

[8] Biham E., Biryukov A., Shamir A., “Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials”, EUROCRYPT'99, LNCS, 1592, 1999, 12–23 | Zbl

[9] Bogdanov A., Shibutani K., “Generalized Feistel networks revisited”, Designs, Codes and Cryptography, 66 (2012), 75–79 | DOI | MR

[10] Li R., Sun B., Li C., Qu L., “Cryptanalysis of a generalized unbalanced Feistel network structure”, ACISP'2010, LNCS, 6168, 2010, 1–18

[11] Zheng Y., Matsumoto T., Imai H., “On the construction of block ciphers provably secure and not relying on any unproved hypotheses”, CRYPTO'1989, LNCS, 435, 1989, 461–480 | MR

[12] Schnorr C. P., “On the construction of random number generators and random function generators”, EUROCRYPT'88, LNCS, 330, 1988, 225–232 | MR | Zbl

[13] Feistel H., Notz W., Smith J. L., “Some cryptographic techniques for machine-to-machine data communications”, Proc. IEEE, 63:11 (1975), 1545–1554 | DOI

[14] Luo Y., Wu Z., Lai X., Gong G., “A unified method for finding impossible differentials of block cipher structures”, Inform. Sci., 263 (2014), 211–220 | DOI

[15] Kim J., Hong S., Lim J., “Impossible differential cryptanalysis using matrix method”, Discr. Math., 310 (2010), 988–1002 | DOI | MR | Zbl

[16] Sylvester J. J., “Problem 7382”, Math. Quest. From Educat. Times, 37 (1884), 26