Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers
Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 27-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for any $1$-lipschitz ergodic map $F\colon\mathbb Z^k_2\mapsto\mathbb Z^k_2$, where $k>1$ and $k\in\mathbb N,$ there are $1$-lipschitz ergodic map $G\colon\mathbb Z_2\mapsto\mathbb Z_2$ and two bijections $H_k$, $T_{k,P}$ such that $G=H_k\circ T_{k,P}\circ F\circ H^{-1}_k$ and $F=H^{-1}_k\circ T_{k,P^{-1}}\circ G\circ H_k$.
Keywords: ergodic, $1$-lipschitz measure-preserving $p$-adic functions, $p$-adic analysis, cartesian product, T-functions.
@article{PDM_2015_1_a2,
     author = {V. V. Sopin},
     title = {Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {27--36},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_1_a2/}
}
TY  - JOUR
AU  - V. V. Sopin
TI  - Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 27
EP  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_1_a2/
LA  - ru
ID  - PDM_2015_1_a2
ER  - 
%0 Journal Article
%A V. V. Sopin
%T Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 27-36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_1_a2/
%G ru
%F PDM_2015_1_a2
V. V. Sopin. Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers. Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 27-36. http://geodesic.mathdoc.fr/item/PDM_2015_1_a2/

[1] Klimov A., Shamir A., “Cryptographic applications of T-functions, Selected areas in cryptography”, LNCS, 3006, 2004, 248–261 | MR | Zbl

[2] Anashin V. S., “Uniformly distributed sequences of $p$-adic integers”, Math. Notes, 55:1–2 (1994), 109–133 | DOI | MR | Zbl

[3] Anashin V. S., “Uniformly distributed sequences over $p$-adic integers”, Proc. Intern. Conf. “Number Theoretic and Algebraic Methods in Computer Science” (Moscow, Juny–July 1993), World Scientific, 1995, 1–18 | MR | Zbl

[4] Anashin V. S., “Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers”, J. Math. Sci., 89:4 (1998), 1355–1390 | DOI | MR | Zbl

[5] Anashin V. S., “Uniformly distributed sequences of $p$-adic integers”, Discr. Math. Appl., 12:6 (2002), 527–590 | MR | Zbl

[6] Anashin V. S., Khrennikov A. U., Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics, 49, Walter de Gruyter, Berlin, 2009, 558 pp. | DOI | MR | Zbl

[7] Anashin V. S., Khrennikov A. U., Yurova E., “T-functions revisited: new criteria for bijectivity/transitivity”, Designs, Codes, and Cryptography, 71:3 (2014), 383–407 | DOI | MR | Zbl

[8] Durand F., Paccaut F., “Minimal polynomial dynamics on the set of 3-adic integers”, Designs, Codes, and Cryptography, 41:2 (2009), 302–314 | MR | Zbl

[9] Slupik A., Sushchansky V., “Minimal generating sets and Cayley graphs of Sylow $p$-subgroups of finite symmetric groups”, Algebra Discr. Math., 2009, no. 4, 167–184 | MR | Zbl

[10] Lavrenyuk Y., Sushchansky V., “Automorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted trees”, Algebra Discr. Math., 2003, no. 4, 33–49 | MR | Zbl