Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2015_1_a2, author = {V. V. Sopin}, title = {Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {27--36}, publisher = {mathdoc}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2015_1_a2/} }
V. V. Sopin. Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers. Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 27-36. http://geodesic.mathdoc.fr/item/PDM_2015_1_a2/
[1] Klimov A., Shamir A., “Cryptographic applications of T-functions, Selected areas in cryptography”, LNCS, 3006, 2004, 248–261 | MR | Zbl
[2] Anashin V. S., “Uniformly distributed sequences of $p$-adic integers”, Math. Notes, 55:1–2 (1994), 109–133 | DOI | MR | Zbl
[3] Anashin V. S., “Uniformly distributed sequences over $p$-adic integers”, Proc. Intern. Conf. “Number Theoretic and Algebraic Methods in Computer Science” (Moscow, Juny–July 1993), World Scientific, 1995, 1–18 | MR | Zbl
[4] Anashin V. S., “Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers”, J. Math. Sci., 89:4 (1998), 1355–1390 | DOI | MR | Zbl
[5] Anashin V. S., “Uniformly distributed sequences of $p$-adic integers”, Discr. Math. Appl., 12:6 (2002), 527–590 | MR | Zbl
[6] Anashin V. S., Khrennikov A. U., Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics, 49, Walter de Gruyter, Berlin, 2009, 558 pp. | DOI | MR | Zbl
[7] Anashin V. S., Khrennikov A. U., Yurova E., “T-functions revisited: new criteria for bijectivity/transitivity”, Designs, Codes, and Cryptography, 71:3 (2014), 383–407 | DOI | MR | Zbl
[8] Durand F., Paccaut F., “Minimal polynomial dynamics on the set of 3-adic integers”, Designs, Codes, and Cryptography, 41:2 (2009), 302–314 | MR | Zbl
[9] Slupik A., Sushchansky V., “Minimal generating sets and Cayley graphs of Sylow $p$-subgroups of finite symmetric groups”, Algebra Discr. Math., 2009, no. 4, 167–184 | MR | Zbl
[10] Lavrenyuk Y., Sushchansky V., “Automorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted trees”, Algebra Discr. Math., 2003, no. 4, 33–49 | MR | Zbl