Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers
Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 27-36

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for any $1$-lipschitz ergodic map $F\colon\mathbb Z^k_2\mapsto\mathbb Z^k_2$, where $k>1$ and $k\in\mathbb N,$ there are $1$-lipschitz ergodic map $G\colon\mathbb Z_2\mapsto\mathbb Z_2$ and two bijections $H_k$, $T_{k,P}$ such that $G=H_k\circ T_{k,P}\circ F\circ H^{-1}_k$ and $F=H^{-1}_k\circ T_{k,P^{-1}}\circ G\circ H_k$.
Keywords: ergodic, $1$-lipschitz measure-preserving $p$-adic functions, $p$-adic analysis, cartesian product, T-functions.
@article{PDM_2015_1_a2,
     author = {V. V. Sopin},
     title = {Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {27--36},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_1_a2/}
}
TY  - JOUR
AU  - V. V. Sopin
TI  - Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 27
EP  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_1_a2/
LA  - ru
ID  - PDM_2015_1_a2
ER  - 
%0 Journal Article
%A V. V. Sopin
%T Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 27-36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_1_a2/
%G ru
%F PDM_2015_1_a2
V. V. Sopin. Ergodic dynamical systems over the cartesian power of the ring of $2$-adic integers. Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 27-36. http://geodesic.mathdoc.fr/item/PDM_2015_1_a2/