On the representation of graphs in the form of a~special type of binary algebra
Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 96-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

An alternative way to define graphs as binary algebras on a set of vertices is considered. For the resulting algebras, we describe congruences, ideals and subalgebras, and obtain criterion for such a graph algebra to be a semigroup. In addition, we consider a practical application of graph algebras for data compression.
Keywords: algebraic graph theory, graph algebra, congruence and ideal on graph, compact storage of graphs.
@article{PDM_2015_1_a10,
     author = {M. N. Nazarov},
     title = {On the representation of graphs in the form of a~special type of binary algebra},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {96--104},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_1_a10/}
}
TY  - JOUR
AU  - M. N. Nazarov
TI  - On the representation of graphs in the form of a~special type of binary algebra
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 96
EP  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_1_a10/
LA  - ru
ID  - PDM_2015_1_a10
ER  - 
%0 Journal Article
%A M. N. Nazarov
%T On the representation of graphs in the form of a~special type of binary algebra
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 96-104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_1_a10/
%G ru
%F PDM_2015_1_a10
M. N. Nazarov. On the representation of graphs in the form of a~special type of binary algebra. Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 96-104. http://geodesic.mathdoc.fr/item/PDM_2015_1_a10/

[1] McNulty G. F., Shallon C. R., “Inherently nonfinitely based finite algebras”, Universal algebra and lattice theory, Lecture Notes in Math., 1004, 1983, 206–231 | DOI | MR | Zbl

[2] Lee S. M., “Simple graph algebras and simple rings”, Southeast Asian Bull. Math., 15 (1991), 117–121 | MR | Zbl

[3] Oates-Williams S., “On the variety generated by Murskii's algebra”, Algebra Universalis, 18:2 (1984), 175–177 | DOI | MR | Zbl

[4] Kelarev A. V., Miller M., Sokratova O. V., “Languages recognized by two-sided automata of graphs”, Proc. Estonian Acad. Sci., 54:1 (2005), 46–54 | MR | Zbl

[5] Yeend T., “Groupoid models for the $C^*$-algebras of topological higher-rank graphs”, J. Operator Theory, 57:1 (2007), 95–120 | MR | Zbl

[6] Nazarov M. N., “Al'ternativnye podhody k opisaniju klassov izomorfnyh grafov”, Prikladnaya Diskretnaya Matematika, 2014, no. 3, 86–97 (in Russian)

[7] Rajagopalan S., Schulman L. J., “Verification of identities”, SIAM J. Comput., 29 (2000), 1155–1163 | DOI | MR | Zbl

[8] Harary F., “A survey of the reconstruction conjecture”, Graphs and Combinatorics, Lecture Notes in Math., 406, 1974, 18–28 | DOI | MR | Zbl

[9] Nazarov M. N., “Sobstvennaja metrika na gruppoidah i ejo prilozhenie k analizu mezhkletochnyh vzaimodejstvij v biologii”, Fundament. i Prikl. Matem., 18:3 (2013), 149–160 (in Russian)